您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>集成电路>

RCC电路原理与设计及问题解析

2009年12月14日 10:31 www.obk20.com 作者:佚名 用户评论(0

RCC电路原理与设计及问题解析

RCC电路,单端反激式的一种,结构简单,主要应用在1~200W,首先变压器设计最为重要,
RCC电路结构主要包括:
1.输入整流滤波 2.吸收电路 .
3.启动反馈 |
4.过压过流保护
5.输出整流滤波

RCC变换器电路原理与应用
RCC(RINGING CHOKE CONVERTER)是一种非定频电源,在国内有很多场合应用。我先来其工作原理,后面的兄弟们要跟帖补充哟!
1. 开关电源的自激振荡状态
220V市电压整流滤波电路产生的300V直流电压分两路输出:一路通过开关压器T1初级绕组加到开
关管Q2的漏极(D极);另一路通过启动电阻R1加到开关管Q2栅极(G极),使Q2导通。
开关管Q2导通后,其集成电极流在开关变压器T1初级组上产生○1正、○2负的感应电动势。由于互感,
T1正反馈绕组相应产生○3正、○4负的感应电动势。于是T1○3脚上的正脉冲电压通过C5、R8加到Q2
的G极与源极(S极)之间,使Q2漏极电流进一步增大,于是开关管Q2在正反馈雪崩过程的作用
下,迅速进入饱和状态。
开关管Q2在饱和期间,开关变压器T1次级绕组所接的整流滤波电路因感应电动势反相而截止,于是
电能便以磁能的方式存储在T1初级绕组内部。由于正反馈雪崩过程时间极短,定时电容C5来不及充
电(等效于短路)。在Q2进入饱和状态后,正反馈绕组上的感应电压对C5充电,随着C5充电的不
断进行,其两端电位差升高。于是Q2以导通回路被切断,使Q2退出饱和状态。
开关管Q2退出饱和状态后,其内阻增大,导致漏极电流进一步下降。由于电感中的电流不能突变,于是开关变压器T1各个绕组的感应电动势反相,正反馈绕组○3端负的脉冲电压与定时电容C5所充
的电压叠加后,使Q2迅速截止。
 开关管Q2在截止期间,定时电容C5放电,以便为下一个正反馈电压(
驱动电压)提供电路,保证开关管Q2能够再次进入饱和状态。同时,开关变压器T1初级绕组存储的
能量耦合到次级绕组并通过整流管整流后,向滤波电容提供能量。
 当初级绕组的能量下降到一定值时,根据电感中的电流不能突变的原理,初级绕组便产生一个反铅电动势,以抵抗电流的下降,该电流在T1初级绕组产生○1正、○2负的感应电动势。T1○3脚感生和正脉冲电压通过正反馈回路,使开关管Q2又重新导通。因此,开关电源电路便工作在自激振荡状态。
 通过以上介绍可知,在自激振荡状态,开关管的导通时间由定时电容C5充电时间决定;开关管截
止时间,由C5放电时间决定。
 在开关管Q2截止期间,开关变压器T1初级绕组存储的能量经次级绕组的耦合,二极管整流供负载。

非常好我支持^.^

(278) 91.7%

不好我反对

(25) 8.3%

相关阅读:

( 发表人:admin )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!