您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>电位器>

选择 LDO 的方法

2009年11月30日 10:14 www.obk20.com 作者:佚名 用户评论(0

选择 LDO 的方法

便携应用在基本条件之外提出更多要求

  在选择低压降线性调节器(LDO) 时,需要考虑的基本问题包括输入电压范围、预期输出电压、负载电流范围以及其封装的功耗能力。但是,便携式应用需要考虑更多问题。接地电流或静态电流 (IGND 或 IQ)、电源波纹抑止比 (PSRR)、噪声与封装大小通常是为便携式应用决定最佳 LDO 选择的要素。

输入、输出以及降低电压
选择输入电压范围可以适应电源的LDO。下表列出了便携式设备所采用的、流行的电池化学物质的电压范围。

在确定 LDO 是否能够提供预期输出电压时,需要考虑其压降。输入电压必须大于预期输出电压与特定压降之和,即 VIN > VOUT + VDROPOUT。如果 VIN 降低至必需的电压以下,则我们说 LDO 出现"压降",输出等于输入减去旁路元件 (pass element) 的 RDS(on) 乘以负载电流。

需要注意压降时的性能变化。驱动旁路晶体管的误差放大器完全打开或者出于"待发状态"(cocked),因此不产生任何环路增益。这意味着线路与负载调节很差。另外,PSRR 在压降时也会显著降低。

选用可提供预期输出电压的 LOD 作为节省外部电阻分压器成本与空间的固定选项,外部电阻分压器一般用于设置可调器件的输出电压。利用可调 LDO 可以设置输出,以提供内部参考电压,其一般为 1.2V 左右,只需把输出连接到反馈引脚。请与厂商确认是否具备该功能。

负载电流要求
通考虑负载需要的电流量并据此选择 LDO。请注意:额定电流为比如 150mA 的 LDO 可能会在短时间内提供高出很多的电流。请查验最低输出电流限值规范,或者咨询有关厂商。

电池电压

电池的化学成分 电压范围
锂离子/锂聚合 2.7~4.2V(额定3.6V)
NiMH/NiCd 0.9~1.5V(额定1.2V)
AA/AAA 0.9~1.5V(额定1.5V)

封装与功耗
便携式应用本质存在空间限制,因此解决方案的大小至关重要。裸片可以最小化尺寸但是缺乏封装的诸多优势,如:保护、行业标准以及能够被现有装配架构轻松采用等特性。芯片级封装 (CSP) 能在提供裸片的尺寸优势的同时还可以带来封装的许多优势。

在无线手持终端市场需求的推动下,CSP产品正不断推陈出新。例如,采用0.84 x 1.348-mm CSP的德州仪器 (TI) 200mA RF LDO(参见图1)预计将于9月份上市,其采用可实现轻松装配以及高板级可靠性的威廉希尔官方网站 。

图1:与SOT-23和SC-70封装相比,采用芯片级封装的LDO同时具备裸片尺寸优势与封装优势

其他小型封装包括流行的3x3mm SOT-23、小型2.13x2.3mm SC-70以及亚1毫米高度封装 (sub-1-mm-height package)、ThinSOT及无引线四方扁平封装 (QFN)。由于在下侧采用了能够在器件与PC板之间建立高效散热接触的散热垫,QFN 因而可提供更好的散热特性。

请注意不要超过封装的最大功耗额定值。功耗可以采用PDISSIPATION = (VIN-VOUT)/(IOUT + IQ) 进行计算。一般来说,封装尺寸越小,功耗越小。但是QFN封装可以提供极佳的散热性能,这种性能完全可与尺寸是其1.5~2倍的众多封装相媲美。

LDO拓扑与IQ
为了最大化电池的运行时间,需要选择相对于负载电流来说静态电流IQ较低的LDO。例如,考虑到IQ 只增加0.02%的微不足道的电池消耗,在100mA负载情况下,一般采用200μA的IQ比较合理。

另外,还需要注意的是,由于电池放电特性,某些情况下压降会对电池寿命产生决定性影响。由于碱性电池放电速度较慢,其电源电压在压降情况下可以提供比NiMH电池更多的容量。必须在 IQ 和压降之间仔细权衡,以便在电池寿命期间获得最大的容量,因此,较低的IQ并不能始终保证长电池寿命。

需要注意IQ 在双极拓扑中的表现。IQ 不但随负载电流变化很大,而且在压降情况下会有所增加。

另外,需要注意在数据表中对IQ 是如何规定的。某些器件是在室温条件下规定的,或者只提供显示IQ与温度关系的典型曲线。尽管这些情况有用,但是并不能保证最大的静态电流。如果IQ 比较重要,则需要选择在所有负载、温度和工艺变量情况下都能保证IQ 的器件,并且需要选择MOS类旁路器件。

输出电容器
典型LDO应用需要增加外部输入和输出电容器。选择对电容器稳定性方面没有要求的LDO,可以降低尺寸与成本,另外还可以完全消除这些元件。请注意,利用较低ESR的大电容器一般可以全面提高PSRR、噪声以及瞬态性能。

陶瓷电容器通常是首选,因为它们价格低而且故障模式是断路,相比之下钽电容器比较昂贵且其故障模式是短路。请注意,输出电容器的等效串联电阻 (ESR) 会影响其稳定性,陶瓷电容器具有较低的ESR,大概为10豪欧量级,而钽电容器ESR在100豪欧量级。另外,许多钽电容器的ESR随温度变化很大,会对LDO性能产生不利影响。如果温度变化不大,而且电容器和接地之间串联适当的电阻(一般200m),可以取代陶瓷电容器而使用钽电容器。需要咨询LDO厂商以确保正确的实施。

RF与音频应用
最后,考虑便携式应用中所采用的、专用电路的功率要求。

RF电路(包括LNA(低噪声放大器)、升压/降压转换器、混频器、PLL、VCO、IF放大器和功率放大器),需要采用具有低噪声和高PSRR的LDO。在设计现代收发系统时应非常小心,以保证低噪声和高线性。

电源噪声会增加VCO的相位噪声,而且会进入接收或发送放大器。在W-CDMA等流行手机威廉希尔官方网站 对频谱再生和邻道功率提出严格要求的情况下,进入放大器的基/栅或收集器/漏极电源的极少量电源噪声就会产生邻道噪声或假信号

为了满足手机、MP3、游戏以及多媒体PDA应用等便携式设备中的音频需求,可能需要300~500mA的LDO。而且,为了获得良好的音频质量,这种LDO在音频频率(20Hz~20kHz)时应该是低噪声并可提供高PSRR。

 

线性稳压器件补偿和波特图分析

一个包含三个极点和一个零点的波特图将用来分析增益和相位裕度。假设直流增益为80dB,第一个极点发生在100Hz处。在此频率时,增益曲线的斜度变为-20dB/十倍频程。1kHz处的零点使斜度变为0dB/十倍频程,到10kHz处增益曲线又变成-20dB/十倍频程。在100kHz处的第三个也是最后一个极点将增益斜度最终变为-40dB/十倍频程。

     也可以看到单位增益点(0dB)交点频率是1MHz。0dB频率通常称为回路带宽(loop bandwidth)。相位偏移图表示了零、极点的不同分布对反馈信号的影响。根据分布的零极点计算相移的总和。在任意频率(f)上的极点相移,可以通过下式计算获得:

    极点相移= -arctan(f/fp)

在任意频率(f)上的零点相移,可以通过下式计算获得:

    零点相移= -arctan(f/fz)

此回路稳定么?为了回答这个问题,我们只需要知道0dB时的相移(是1MHz)。根本无需复杂的计算。

     前两个极点和第一个零点分布使相位从-180°变到+90°,最终导致网络相位转变到-90°。最后一个极点在十倍频程中出现了0dB点。使用零点相移公式,该极点产生了-84°的相移(在1MHz时)。加上原来的-90°相移,全部的相移是-174°(也就是说相位裕度是6°)。该回路可能引起振荡。

 NPN 稳压器补偿

NPN 稳压器的导通管的连接方式是共集电极的方式。所有共集电极电路的一个重要特性就是低输出阻抗。也就意味着电源范围内的极点出现在回路增益曲线的高频部分。由于NPN稳压器没有固有的低频极点,所以它使用了一种称为主极点补偿(dominant pole compensation)的威廉希尔官方网站 。此时,在IC的内部集成了一个电容,该电容在环路增益的低频端添加了一个极点。

 NPN稳压器的主极点(P1)一般设置在100Hz处。100Hz处的极点将增益减小为-20dB/十倍频程直到3MHz处的第二个极点(P2)。在P2处,增益曲线的斜率又增加了-20dB/十倍频程。P2点的频率主要取决于NPN功率管及相关驱动电路,因此有时称此点为功率极点(power pole)。因为P2点在回路增益为-10dB处出现,也就表示了0dB频率处(1MHz)的相位偏移会很小。

     为了确定稳定性,只需要计算0dB频率处的相位裕度:

    第一个极点(P1)会产生-90°的相位偏移,但是第二个极点(P2)只增加了-18°的相位偏移(1MHz处)。也就是说0dB点处的相位偏移为-108°,相位裕度为72°(非常稳定)。应该提起注意的是,回路很显然是稳定的。因为需要两个极点才有可能使回路要达到-180°的相位偏移(不稳定点),而P2又分布在高频位置,它在0dB处的相位偏移就很小了。

 LDO 稳压器的补偿

    LDO稳压器中的PNP导通管的接法为共射方式(common emitter)。它相对共集电极方式有更高的输出阻抗。由于负载阻抗和输出容抗的影响在低频程处会出现低频极点(low-frequency pole)。此极点(称为负载极点(load pole)用Pl表示)的频率由下式获得:

F(Pl) =1/(2π×Rload×Cout)。从此式可知,不能通过简单的添加主极点的方式实现补偿。

 为了解释为什么会这样,先假设一个5V/50mA的LDO稳压器有下面的条件:

在最大负载电流时,负载极点(Pl)出现的频率为:

Pl=1/(2π×Rload×Cout)=1/(2π×100×10-5)=160Hz

假设内部的补偿在1kHz处添加了一个极点。由于PNP功率管和驱动电路的存在,在500kHz处会出现一个功率极点(Ppwr)。

假设直流增益为80dB。Rl =100Ω(在最大负载电流时的值),Cout=10uF。

      可以看出回路是不稳定的:极点PL和P1每个都会产生-90°的相移。在0dB处(此例为40kHz),相移达到了-180°为了减少负相移(阻止振荡),在回路中必须要添加一个零点。一个零点可以产生+90°的相移,它会抵消两个低频极点的部分影响。基本上所有的LDO稳压器都需要在回路中添加这个零点。该零点一般是通过输出电容的一个特性:等效串联电阻(ESR)获得的。

 使用ESR补偿LDO

等效串联电阻(ESR)是每个电容共有的特性。可以将电容表示为电阻与电容的串联。输出电容的ESR在回路增益中产生一个零点,可以用来减少负相移。零点出现的频率值与ESR和输出电容值直接相关:Fzero= 1/(2π×Cout×ESR)。使用上一节的例子,我们假设输出电容值Cout=10uF而且输出电容的ESR=1Ω。则零点发生在16kHz。

   添加此零点如何使不稳定系统变为稳定系统:

      回路的带宽增加了所以0dB的交点频率从30kHz移到了100kHz。到100kHz处该零点总共增加了+81°相移。也就是减少了PL和P1造成的负相移。因为极点Ppwr处在500kHz,在100kHz处它仅增加了-11°的相移。累积所有的零、极点,0dB处的总相移现在为-110°。也就是有+70°的相位裕度,系统非常稳定。这也就解释了具有正确ESR值的输出电容是可以产生零点来稳定LDO系统的

非常好我支持^.^

(0) 0%

不好我反对

(2) 100%

( 发表人:admin )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!