资料介绍
Table of Contents
Digital Potentiometer Linux Driver
Supported Devices
Reference Circuits
Evaluation Boards
- PMOD-DPOT
Description
The ad525x_dpot driver exports a simple sysfs interface. This allows you to work with the immediate resistance settings as well as update the saved startup settings. Access to the factory programmed tolerance is also provided, but interpretation of this settings is required by the end application according to the specific part in use.
Files
Each dpot device will have a set of eeprom, rdac, and tolerance files. How many depends on the actual part you have, as will the range of allowed values.
The eeprom files are used to program the startup value of the device.
The rdac files are used to program the immediate value of the device.
The tolerance files are the read-only factory programmed tolerance settings and may vary greatly on a part-by-part basis. For exact interpretation of this field, please consult the datasheet for your part. This is presented as a hex file for easier parsing.
Source Code
Status
Files
Function | File |
---|---|
driver | drivers/misc/ad525x_dpot.c |
i2c bus support | drivers/misc/ad525x_dpot-i2c.c |
spi bus support | drivers/misc/ad525x_dpot-spi.c |
include | drivers/misc/ad525x_dpot.h |
Example platform device initialization
For compile time configuration, it’s common Linux practice to keep board- and application-specific configuration out of the main driver file, instead putting it into the board support file.
For devices on custom boards, as typical of embedded and SoC-(system-on-chip) based hardware, Linux uses platform_data to point to board-specific structures describing devices and how they are connected to the SoC. This can include available ports, chip variants, preferred modes, default initialization, additional pin roles, and so on. This shrinks the board-support packages (BSPs) and minimizes board and application specific #ifdefs in drivers.
Example Platform / Board file (I2C Interface)
Declaring I2C devices
Unlike PCI or USB devices, I2C devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each I2C bus segment, and what address these devices are using. For this reason, the kernel code must instantiate I2C devices explicitly. There are different ways to achieve this, depending on the context and requirements. However the most common method is to declare the I2C devices by bus number.
This method is appropriate when the I2C bus is a system bus, as in many embedded systems, wherein each I2C bus has a number which is known in advance. It is thus possible to pre-declare the I2C devices that inhabit this bus. This is done with an array of struct i2c_board_info, which is registered by calling i2c_register_board_info().
So, to enable such a driver one need only edit the board support file by adding an appropriate entry to i2c_board_info.
For more information see: Documentation/i2c/instantiating-devices
static struct i2c_board_info __initdata bfin_i2c_board_info[] = { #if defined(CONFIG_AD525X_DPOT) || defined(CONFIG_AD525X_DPOT_MODULE) { I2C_BOARD_INFO("ad5245", 0x2c), }, { I2C_BOARD_INFO("ad5245", 0x2d), }, #endif }
Example Platform / Board file (SPI Interface)
Declaring SPI slave devices
Unlike PCI or USB devices, SPI devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each SPI bus segment, and what slave selects these devices are using. For this reason, the kernel code must instantiate SPI devices explicitly. The most common method is to declare the SPI devices by bus number.
This method is appropriate when the SPI bus is a system bus, as in many embedded systems, wherein each SPI bus has a number which is known in advance. It is thus possible to pre-declare the SPI devices that inhabit this bus. This is done with an array of struct spi_board_info, which is registered by calling spi_register_board_info().
For more information see: Documentation/spi/spi-summary
static struct spi_board_info bfin_spi_board_info[] __initdata = { #if defined(CONFIG_AD525X_DPOT) || defined(CONFIG_AD525X_DPOT_MODULE) { .modalias = "ad5291", .max_speed_hz = 5000000, /* max spi clock (SCK) speed in HZ */ .bus_num = 0, .chip_select = 1, }, #endif };
Old Method
static struct spi_board_info bfin_spi_board_info[] __initdata = { #if defined(CONFIG_AD525X_DPOT) || defined(CONFIG_AD525X_DPOT_MODULE) { .modalias = "ad_dpot", .platform_data = "ad5291", .max_speed_hz = 5000000, /* max spi clock (SCK) speed in HZ */ .bus_num = 0, .chip_select = 1, }, #endif };
Adding Linux driver support
Configure kernel with “make menuconfig” (alternatively use “make xconfig” or “make qconfig”)
The ad525x_dpot driver depends on CONFIG_SPI or CONFIG_I2C
Device Drivers ---> [*] Misc devices ---> <*> Analog Devices Digital Potentiometers <*> support I2C bus connection <*> support SPI bus connection
Hardware configuration
Driver testing
Locate the device in your sysfs tree. This is probably easiest by going into the common i2c directory and locating the device by the i2c slave address.
# ls /sys/bus/i2c/devices/ 0-0022 0-0027 0-002fSo assuming the device in question is on the first i2c bus and has the slave address of 0x2f, we descend (unrelated sysfs entries have been trimmed).
# ls /sys/bus/i2c/devices/0-002f/ eeprom0 rdac0 tolerance0You can use simple reads/writes to access these files:
# cd /sys/bus/i2c/devices/0-002f/ # cat eeprom0 0 # echo 10 > eeprom0 # cat eeprom0 10 # cat rdac0 5 # echo 3 > rdac0 # cat rdac0 3
More Information
- 数字电位器X9C103的测试程序代码下载 58次下载
- AD9834 IIO直接数字合成Linux驱动程序
- AD9832 IIO直接数字合成Linux驱动程序
- 数字电位器的PCB原理图免费下载 30次下载
- DS1666数字电位器的中文资料说明 25次下载
- STM32F103数字电位器X9C103的驱动程序免费下载 184次下载
- 优化数字电位器电路设计方案 12次下载
- Linux驱动程序缺陷检测研究 9次下载
- Linux系统网络驱动程序的编写 0次下载
- 第9章 Linux驱动程序设计 3次下载
- 理解和应用数字电位器
- DAC与数字电位器
- 数字电位器的应用
- 理解和应用数字电位器
- 从机械式电位器升级到数字电位器
- 用线性数字电位器实现对数调节 1312次阅读
- 数字控制电位器和电阻器与激光驱动器接口 618次阅读
- 数字电位器取代机械电位器 2037次阅读
- AD8400系列数字电位器的驱动设计与实现 3280次阅读
- AD527x系列数字电位器的驱动设计与实现 1948次阅读
- 米尔科技LINUX设备驱动程序教程 1967次阅读
- 数字电位器AD5160测试程序 2.2w次阅读
- 如何理解数字电位器 9342次阅读
- 如何制作数字电位器_数字电位器制作方法 2w次阅读
- 常用数字电位器芯片有哪些 11.1w次阅读
- 数字电位器工作原理详解_数字电位器应用_数字电位器选型指南 5.8w次阅读
- 数字电位器控制原理图 3.4w次阅读
- 数字电位器应用实例_数字电位器四大应用电路 4.5w次阅读
- 数字电位器怎么选型_数字电位器选型指南 9321次阅读
- 数字电位器串口设计与仿真 1761次阅读
下载排行
本周
- 1HFSS电磁仿真设计应用详解PDF电子教程免费下载
- 24.30 MB | 128次下载 | 1 积分
- 2雷达的基本分类方法
- 1.25 MB | 4次下载 | 4 积分
- 3电感威廉希尔官方网站 讲解
- 827.73 KB | 2次下载 | 免费
- 4从 MSP430™ MCU 到 MSPM0 MCU 的迁移指南
- 1.17MB | 2次下载 | 免费
- 5有源低通滤波器设计应用说明
- 1.12MB | 2次下载 | 免费
- 6RA-Eco-RA2E1-48PIN-V1.0开发板资料
- 35.59 MB | 2次下载 | 免费
- 7面向热插拔应用的 I2C 解决方案
- 685.57KB | 1次下载 | 免费
- 8爱普生有源晶体振荡器SG3225EEN应用于储能NPC、新能源
- 317.46 KB | 1次下载 | 免费
本月
- 12024年工控与通信行业上游发展趋势和热点解读
- 2.61 MB | 763次下载 | 免费
- 2HFSS电磁仿真设计应用详解PDF电子教程免费下载
- 24.30 MB | 128次下载 | 1 积分
- 3继电保护原理
- 2.80 MB | 36次下载 | 免费
- 4正激、反激、推挽、全桥、半桥区别和特点
- 0.91 MB | 32次下载 | 1 积分
- 5labview实现DBC在界面加载配置
- 0.57 MB | 21次下载 | 5 积分
- 6在设计中使用MOSFET瞬态热阻抗曲线
- 1.57MB | 15次下载 | 免费
- 7GBT 4706.1-2024家用和类似用途电器的安全第1部分:通用要求
- 7.43 MB | 14次下载 | 免费
- 8AD18学习笔记
- 14.47 MB | 8次下载 | 2 积分
总榜
- 1matlab软件下载入口
- 未知 | 935113次下载 | 10 积分
- 2开源硬件-PMP21529.1-4 开关降压/升压双向直流/直流转换器 PCB layout 设计
- 1.48MB | 420061次下载 | 10 积分
- 3Altium DXP2002下载入口
- 未知 | 233084次下载 | 10 积分
- 4电路仿真软件multisim 10.0免费下载
- 340992 | 191360次下载 | 10 积分
- 5十天学会AVR单片机与C语言视频教程 下载
- 158M | 183329次下载 | 10 积分
- 6labview8.5下载
- 未知 | 81578次下载 | 10 积分
- 7Keil工具MDK-Arm免费下载
- 0.02 MB | 73804次下载 | 10 积分
- 8LabVIEW 8.6下载
- 未知 | 65985次下载 | 10 积分
评论
查看更多