广泛用于图像分类的数据集之一是手写数字的MNIST 数据集 (LeCun等人,1998 年) 。在 1990 年代发布时,它对大多数机器学习算法提出了巨大挑战,其中包含 60,000 张图像 28×28像素分辨率(加上 10,000 张图像的测试数据集)。客观地说,在 1995 年,配备高达 64MB RAM 和惊人的 5 MFLOPs 的 Sun SPARCStation 5 被认为是 AT&T 贝尔实验室最先进的机器学习设备。实现数字识别的高精度是一个1990 年代 USPS 自动分拣信件的关键组件。深度网络,如 LeNet-5 (LeCun等人,1995 年)、具有不变性的支持向量机 (Schölkopf等人,1996 年)和切线距离分类器 (Simard等人,1998 年)都允许达到 1% 以下的错误率。
十多年来,MNIST 一直是比较机器学习算法的参考点。虽然它作为基准数据集运行良好,但即使是按照当今标准的简单模型也能达到 95% 以上的分类准确率,这使得它不适合区分强模型和弱模型。更重要的是,数据集允许非常高的准确性,这在许多分类问题中通常是看不到的。这种算法的发展偏向于可以利用干净数据集的特定算法系列,例如活动集方法和边界搜索活动集算法。今天,MNIST 更像是一种健全性检查,而不是基准。ImageNet ( Deng et al. , 2009 )提出了一个更相关的挑战。不幸的是,对于本书中的许多示例和插图来说,ImageNet 太大了,因为训练这些示例需要很长时间才能使示例具有交互性。作为替代,我们将在接下来的部分中重点讨论定性相似但规模小得多的 Fashion-MNIST 数据集(Xiao等人,2017 年),该数据集于 2017 年发布。它包含 10 类服装的图像 28×28像素分辨率。
%matplotlib inline
import time
import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from jax import numpy as jnp
from d2l import jax as d2l
d2l.use_svg_display()
4.2.1. 加载数据集
由于它是一个经常使用的数据集,所有主要框架都提供了它的预处理版本。我们可以使用内置的框架实用程序将 Fashion-MNIST 数据集下载并读取到内存中。
class FashionMNIST(d2l.DataModule): #@save
"""The Fashion-MNIST dataset."""
def __init__(self, batch_size=64, resize=(28, 28)):
super().__init__()
self.save_hyperparameters()
trans = transforms.Compose([transforms.Resize(resize),
transforms.ToTensor()])
self.train = torchvision.datasets.FashionMNIST(
root=self.root, train=True, transform=trans, download=True)
self.val = torchvision.datasets.FashionMNIST(
root=self.root, train=False, transform=trans, download=True)
class FashionMNIST(d2l.DataModule): #@save
"""The Fashion-MNIST dataset."""
def __init__(self, batch_size=64, resize=(28, 28)):
super().__init__()
self.save_hyperparameters()
trans = transforms.Compose([transforms.Resize(resize),
transforms.ToTensor()])
self.train = gluon.data.vision.FashionMNIST(
train=True).transform_first(trans)
self.val = gluon.data.vision.FashionMNIST(
train=False).transform_first(trans)
Fashion-MNIST 包含来自 10 个类别的图像,每个类别在训练数据集中由 6,000 个图像表示,在测试数据集中由 1,000 个图像表示。测试 数据集用于评估模型性能(不得用于训练)。因此,训练集和测试集分别包含 60,000 和 10,000 张图像。
图像是灰度和放大到32×32分辨率以上的像素。这类似于由(二进制)黑白图像组成的原始 MNIST 数据集。但请注意,大多数具有 3 个通道(红色、绿色、蓝色)的现代图像数据和超过 100 个通道的高光谱图像(HyMap 传感器有 126 个通道)。按照惯例,我们将图像存储为 c×h×w张量,其中c是颜色通道数,h是高度和w是宽度。
评论
查看更多