电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>汽车电子>什么是深度强化学习?深度强化学习在自动驾驶领域的应用

什么是深度强化学习?深度强化学习在自动驾驶领域的应用

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

利用对抗性深度强化学习来衡量自动驾驶汽车的运动规划和碰撞避免机制的可靠性

and rule-based techniques),等等。最近,机器学习的进步使得基于诸如模仿学习深度强化学习(RL)等威廉希尔官方网站 的全新数据驱动的碰撞避免方法成为可能。
2018-06-08 09:54:025808

一个使用传统DAS和深度强化学习融合的自动驾驶框架

本文提出了一个使用传统DAS和深度强化学习融合的自动驾驶框架。该框架在DAS功能(例如车道变换,巡航控制和车道保持等)下,以最大限度地提高平均速度和最少车道变化为规则,来确定超车次数。可行驶空间
2018-06-14 09:41:098521

使用Isaac Gym 来强化学习mycobot 抓取任务

使用Isaac Gym来强化学习mycobot抓取任务
2023-04-11 14:57:125339

什么是深度强化学习?深度强化学习算法应用分析

什么是深度强化学习? 众所周知,人类擅长解决各种挑战性的问题,从低级的运动控制(如:步行、跑步、打网球)到高级的认知任务。
2023-07-01 10:29:501002

Facebook推出ReAgent AI强化学习工具包

Facebook近日推出ReAgent强化学习(reinforcement learning)工具包,首次通过收集离线反馈(offline feedback)来实现策略评估(policy evaluation)。
2019-10-19 09:38:411347

深度学习DeepLearning实战

一:深度学习DeepLearning实战时间地点:1 月 15日— 1 月18 日二:深度强化学习核心威廉希尔官方网站 实战时间地点: 1 月 27 日— 1 月30 日(第一天报到 授课三天;提前环境部署 电脑
2021-01-09 17:01:54

深度学习及无线通信热点问题介绍

利用ML构建无线环境地图及其无线通信中的应用•使用深度学习的收发机设计和信道解码基于ML的混合学习方法,用于信道估计、建模、预测和压缩 使用自动编码器等ML威廉希尔官方网站 的端到端通信•无线电资源管理深度强化学习
2021-07-01 10:49:03

深度学习威廉希尔官方网站 的开发与应用

/A2C6.DDPG7.PPO8.SAC1.深度强化学习训练场-OpenAI Gym 安装与使用2.Pytorch安装与使用3.自动驾驶赛车任务4.月球飞船降落任务实操解析与训练一实验:倒立摆和冰壶控制实践1.环境编写
2022-04-21 14:57:39

深度学习是什么

创客们的最酷“玩具”  智能无人机、自主机器人、智能摄像机、自动驾驶……今年最令硬件创客们着迷的词汇,想必就是这些一线“网红”了。而这些网红的背后,几乎都和计算机视觉与深度学习密切相关。  深度学习
2021-07-19 06:17:28

深度强化学习实战

一:深度学习DeepLearning实战时间地点:1 月 15日— 1 月18 日二:深度强化学习核心威廉希尔官方网站 实战时间地点: 1 月 27 日— 1 月30 日(第一天报到 授课三天;提前环境部署 电脑
2021-01-10 13:42:26

AI/自动驾驶领域的巅峰会议—国际AI自动驾驶高峰论坛

已经渗透到了社会生活的方方面面。人工智能在自动驾驶领域将对整个汽车出行领域产生颠覆性变革。汽车的人工智能威廉希尔官方网站 和数据后端的最新突破使自动驾驶成为可能。深度学习、高级数字助理和动态电子视野方面的新科技
2017-09-13 13:59:54

人工智能深度学习发展迅速,智能科技公司都已经涉足人工智能产品的研发!

,Deep Learning—迁移学习5,Deep Learning—深度强化学习6,深度学习的常用模型或者方法深度学习交流大群: 372526178 (资料共享,加群备注杨春娇邀请)
2018-09-05 10:22:34

人工智能AI-深度学习C#&LabVIEW视觉控制演示效果

不断变化的,因此深度学习是人工智能AI的重要组成部分。可以说人脑视觉系统和神经网络。2、目标检测、目标跟踪、图像增强、强化学习、模型压缩、视频理解、人脸威廉希尔官方网站 、三维视觉、SLAM、GAN、GNN等。
2020-11-27 11:54:42

介绍多智能体系统的解决方案以及应用

方向参考摘要强化学习算法已经存在了几十年,并被用于解决各种顺序决策问题。然而,这些算法处理高维环境时却面临着巨大的挑战。深度学习的最新发展使RL方法能够为复杂和有能力的智能体驱动最佳策略,这可以在这
2021-07-12 08:44:43

反向强化学习的思路

强化学习的另一种策略(二)
2019-04-03 12:10:44

基于强化学习的飞行自动驾驶仪设计

针对强化学习在连续状态连续动作空间中的维度灾难问题,利用BP神经网络算法作为值函数逼近策略,设计了自动驾驶仪。并引入动作池机制,有效避免飞行仿真中危险动作的发生。首先
2013-06-25 16:27:2227

强化学习在RoboCup带球任务中的应用刘飞

强化学习在RoboCup带球任务中的应用_刘飞
2017-03-14 08:00:000

深度学习强化学习和迁移学习有机结合的研究

界声誉卓著。在此前接受CSDN采访时,杨强介绍了他目前的主要工作致力于一个将深度学习强化学习和迁移学习有机结合的Reinforcement Transfer Learning(RTL)体系的研究。那么,这个威廉希尔官方网站 框架对工业界的实际应用有什么用的实际意义?在本文中,CSDN结合杨强的另外一个身份国内人工智能创业
2017-10-09 18:23:180

深度强化学习分析研究

请订阅2016年《程序员》 尽管监督式和非监督式学习深度模型已经广泛被威廉希尔官方网站 社区所采用,深度强化学习仍旧显得有些神秘。这篇文章将试图揭秘
2017-10-09 18:28:430

深度强化学习是什么?有什么优点?

与监督机器学习不同,在强化学习中,研究人员通过让一个代理与环境交互来训练模型。当代理的行为产生期望的结果时,它得到正反馈。例如,代理人获得一个点数或赢得一场比赛的奖励。简单地说,研究人员加强了代理人的良好行为。
2018-07-13 09:33:0024319

深度学习强化学习相结合的深度强化学习DRL

深度强化学习DRL自提出以来, 已在理论和应用方面均取得了显著的成果。尤其是谷歌DeepMind团队基于深度强化学习DRL研发的AlphaGo,将深度强化学习DRL成推上新的热点和高度,成为人工智能历史上一个新的里程碑。因此,深度强化学习DRL非常值得研究。
2018-06-29 18:36:0027596

萨顿科普了强化学习深度强化学习,并谈到了这项威廉希尔官方网站 的潜力和发展方向

萨顿在专访中(再次)科普了强化学习深度强化学习,并谈到了这项威廉希尔官方网站 的潜力,以及接下来的发展方向:预测学习
2017-12-27 09:07:1510856

基于分层强化学习的多Agent路径规划

针对路径规划算法收敛速度慢及效率低的问题,提出了一种基于分层强化学习及人工势场的多Agent路径规划算法。首先,将多Agent的运行环境虚拟为一个人工势能场,根据先验知识确定每点的势能值,它代表最优
2017-12-27 14:32:020

基于LCS和LS-SVM的多机器人强化学习

本文提出了一种LCS和LS-SVM相结合的多机器人强化学习方法,LS-SVM获得的最优学习策略作为LCS的初始规则集。LCS通过与环境的交互,能更快发现指导多机器人强化学习的规则,为强化学习系统
2018-01-09 14:43:490

强化学习的风储合作决策

在风储配置给定前提下,研究风电与储能系统如何有机合作的问题。核心在于风电与储能组成混合系统参与电力交易,通过合作提升其市场竞争的能力。针对现有研究的不足,在具有过程化样本的前提下,引入强化学习算法
2018-01-27 10:20:502

如何深度强化学习 人工智能和深度学习的进阶

传统上,强化学习在人工智能领域占据着一个合适的地位。但强化学习在过去几年已开始在很多人工智能计划中发挥更大的作用。
2018-03-03 14:16:563924

简单随机搜索:无模型强化学习的高效途径

让我们在强化学习社区感兴趣的问题上应用随机搜索。深度强化学习领域一直把大量时间和精力用于由OpenAI维护的、基于MuJoCo模拟器的一套基准测试中。这里,最优控制问题指的是让一个有腿机器人
2018-04-01 09:35:004193

人工智能机器学习强化学习

强化学习是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价
2018-05-30 06:53:001234

强化学习自动驾驶的应用

自动驾驶汽车首先是人工智能问题,而强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物。今天人工智能头条给大家介绍强化学习自动驾驶的一个应用案例,无需3D地图也无需规则,让汽车从零开始在二十分钟内学会自动驾驶
2018-07-10 09:00:294676

AI核心领域——强化学习的缺陷

前段时间,OpenAI的游戏机器人在Dota2的比赛中赢了人类的5人小组,取得了团队胜利,是强化学习攻克的又一游戏里程碑。
2018-07-13 08:56:014439

什么是强化学习?纯强化学习有意义吗?强化学习有什么的致命缺陷?

强化学习是人工智能基本的子领域之一,在强化学习的框架中,智能体通过与环境互动,来学习采取何种动作能使其在给定环境中的长期奖励最大化,就像在上述的棋盘游戏寓言中,你通过与棋盘的互动来学习
2018-07-15 10:56:3717105

OpenAI 把在模拟器中强化学习学到的方案迁移到机械手上

这些具有一定难度的任务 OpenAI 自己也在研究,他们认为这是深度强化学习发展到新时代之后可以作为新标杆的算法测试任务,而且也欢迎其它机构与学校的研究人员一同研究这些任务,把深度强化学习的表现推上新的台阶。
2018-08-03 14:27:264303

强化学习泡沫之后,人工智能的终极答案是什么?

结合 DL 与 RL 的深度强化学习(Deep Reinforcement Learning, DRL)迅速成为人工智能界的焦点。
2018-08-09 10:12:435789

探讨深度学习自动驾驶中的应用

深度强化学习的理论、自动驾驶威廉希尔官方网站 的现状以及问题、深度强化学习自动驾驶威廉希尔官方网站 当中的应用及基于深度强化学习的礼让自动驾驶研究。
2018-08-18 10:19:574854

强化学习环境研究,智能体玩游戏为什么厉害

强化学习作为一种常用的训练智能体的方法,能够完成很多复杂的任务。在强化学习中,智能体的策略是通过将奖励函数最大化训练的。奖励在智能体之外,各个环境中的奖励各不相同。深度学习的成功大多是有密集并且有效的奖励函数,例如电子游戏中不断增加的“分数”。
2018-08-18 11:38:573362

强化学习和监督式学习, 非监督式学习的区别

而这时,强化学习会在没有任何标签的情况下,通过先尝试做出一些行为得到一个结果,通过这个结果是对还是错的反馈,调整之前的行为,就这样不断的调整,算法能够学习到在什么样的情况下选择什么样的行为可以得到最好的结果。
2018-08-21 09:18:2519121

谷歌推出新的基于Tensorflow的强化学习框架,称为Dopamine

强化学习(RL)研究在过去几年取得了许多重大进展。强化学习的进步使得 AI 智能体能够在一些游戏上超过人类,值得关注的例子包括 DeepMind 攻破 Atari 游戏的 DQN,在围棋中获得瞩目的 AlphaGo 和 AlphaGo Zero,以及在 Dota2 对战人类职业玩家的Open AI Five。
2018-08-31 09:20:493497

Google强化学习框架,要满足哪三大特性

强化学习是一种非常重要 AI 威廉希尔官方网站 ,它能使用奖励(或惩罚)来驱动智能体(agents)朝着特定目标前进,比如它训练的 AI 系统 AlphaGo 击败了顶尖围棋选手,它也是 DeepMind 的深度
2018-09-03 14:06:302653

深度强化学习将如何控制机械臂的灵活动作

直接的强化学习方法很有吸引力,它无需过多假设,而且能自动掌握很多技能。由于这种方法除了建立函数无需其他信息,所以很容易在改进后的环境中重新学习技能,例如更换了目标物体或机械手。
2018-09-05 08:54:159616

基于目标图像的视觉强化学习算法,让机器人可以同时学习多个任务

强化学习是一种训练主体最大化奖励的学习机制,对于目标条件下的强化学习来说可以将奖励函数设为当前状态与目标状态之间距离的反比函数,那么最大化奖励就对应着最小化与目标函数的距离。
2018-09-24 10:11:006779

用PopArt进行多任务深度强化学习

按照以往的做法,如果研究人员要用强化学习算法对奖励进行剪枝,以此克服奖励范围各不相同的问题,他们首先会把大的奖励设为+1,小的奖励为-1,然后对预期奖励做归一化处理。虽然这种做法易于学习,但它也改变了智能体的目标。
2018-09-16 09:32:035334

基于强化学习的MADDPG算法原理及实现

之前接触的强化学习算法都是单个智能体的强化学习算法,但是也有很多重要的应用场景牵涉到多个智能体之间的交互。
2018-11-02 16:18:1521016

如何构建强化学习模型来训练无人车算法

本文作者通过简单的方式构建了强化学习模型来训练无人车算法,可以为初学者提供快速入门的经验。
2018-11-12 14:47:394570

如何使用深度强化学习进行机械臂视觉抓取控制的优化方法概述

针对提高视觉图像特征与优化控制之间契合度的问题,本文提出一种基于深度强化学习的机械臂视觉抓取控制优化方法,可以自主地从与环境交互产生的视觉图像中不断学习特征提取,直接地将提取的特征应用于机械臂抓取
2018-12-19 15:23:5922

量化深度强化学习算法的泛化能力

OpenAI 近期发布了一个新的训练环境 CoinRun,它提供了一个度量智能体将其学习经验活学活用到新情况的能力指标,而且还可以解决一项长期存在于强化学习中的疑难问题——即使是广受赞誉的强化算法在训练过程中也总是没有运用监督学习的威廉希尔官方网站 。
2019-01-01 09:22:002122

如何测试强化学习智能体适应性

强化学习(RL)能通过奖励或惩罚使智能体实现目标,并将它们学习到的经验转移到新环境中。
2018-12-24 09:29:562949

深度强化学习能让机器人拥有人一样的意识

了一种人工智能系统,即通过深度强化学习学习走路,简单来说,就是教“一个四足机器人来穿越熟悉和不熟悉的地形”。
2019-01-03 09:50:133286

使用加权密集连接卷积网络的深度强化学习方法说明

针对深度强化学习中卷积神经网络(CNN)层数过深导致的梯度消失问题,提出一种将密集连接卷积网络应用于强化学习的方法。首先,利用密集连接卷积网络中的跨层连接结构进行图像特征的有效提取;然后,在密集连接
2019-01-23 10:41:513

对NAS任务中强化学习的效率进行深入思考

在一些情况下,我们会用策略函数(policy, 总得分,也就是搭建的网络在测试集上的精度(accuracy),通过强化学习(Reinforcement Learning)这种通用黑盒算法来优化。然而,因为强化学习本身具有数据利用率低的特点,这个优化的过程往往需要大量的计算资源。
2019-01-28 09:54:224704

谷歌、DeepMind重磅推出PlaNet 强化学习新突破

Google AI 与 DeepMind 合作推出深度规划网络 (PlaNet),这是一个纯粹基于模型的智能体,能从图像输入中学习世界模型,完成多项规划任务,数据效率平均提升50倍,强化学习又一突破。
2019-02-17 09:30:283036

多智体深度强化学习研究中首次将概率递归推理引入AI的学习过程

在传统的多智体学习过程当中,有研究者在对其他智能体建模 (也即“对手建模”, opponent modeling) 时使用了递归推理,但由于算法复杂和计算力所限,目前还尚未有人在多智体深度强化学习 (Multi-Agent Deep Reinforcement Learning) 的对手建模中使用递归推理。
2019-03-05 08:52:434556

深度强化学习是否已经到达尽头?

近日,Reddit一位网友根据近期OpenAI Five、AlphaStar的表现,提出“深度强化学习是否已经到达尽头”的问题。
2019-05-10 16:34:592313

DeepMind 综述深度强化学习 智能体和人类相似度竟然如此高

近年来,深度强化学习(Deep reinforcement learning)方法在人工智能方面取得了瞩目的成就,从 Atari 游戏、到围棋、再到无限制扑克等领域,AI 的表现都大大超越了专业选手,这一进展引起了众多认知科学家的关注。
2019-05-30 17:29:352550

DeepMind 综述深度强化学习:智能体和人类相似度竟然如此高!

近年来,深度强化学习(Deep reinforcement learning)方法在人工智能方面取得了瞩目的成就
2019-06-03 14:36:052619

谷歌发布非政策强化学习算法OPC的最新研究机器学习即将开辟新篇章?

在谷歌最新的论文中,研究人员提出了“非政策强化学习”算法OPC,它是强化学习的一种变体,它能够评估哪种机器学习模型将产生最好的结果。数据显示,OPC比基线机器学习算法有着显著的提高,更加稳健可靠。
2019-06-22 11:17:083374

深度学习的起源与先行者

深度学习也增强了强化学习这一已存在的领域
2019-07-11 16:06:461463

深度强化学习给推荐系统以及CTR预估工业界带来的最新进展

所以,Google这两篇强化学习应用于YouTube推荐论文的出现给大家带来了比较振奋人心的希望。首先,论文中宣称效果对比使用的Baseline就是YouTube推荐线上最新的深度学习模型;
2019-07-18 11:11:008388

强化学习应用中对话系统的用户模拟器

近几年来,强化学习在任务导向型对话系统中得到了广泛的应用,对话系统通常被统计建模成为一个 马尔科夫决策过程(Markov Decision Process)模型,通过随机优化的方法来学习对话策略。
2019-08-06 14:16:291836

深度学习威廉希尔官方网站 与自动驾驶设计的结合

在过去的十年里,自动驾驶汽车威廉希尔官方网站 取得了越来越快的进步,主要得益于深度学习和人工智能领域的进步。作者就自动驾驶中使用的深度学习威廉希尔官方网站 的现状以及基于人工智能的自驱动结构、卷积和递归神经网络、深度强化学习
2019-10-28 16:07:191831

关于深度强化学习的概念以及它的工作原理

深度学习DL是机器学习中一种基于对数据进行表征学习的方法。深度学习DL有监督和非监督之分,都已经得到广泛的研究和应用。
2020-01-30 09:53:005546

深度强化学习你知道是什么吗

强化学习非常适合实现自主决策,相比之下监督学习与无监督学习威廉希尔官方网站 则无法独立完成此项工作。
2019-12-10 14:34:571092

人工智能之深度强化学习DRL的解析

深度学习DL是机器学习中一种基于对数据进行表征学习的方法。深度学习DL有监督和非监督之分,都已经得到广泛的研究和应用。
2020-01-24 10:46:004734

懒惰强化学习算法在发电调控REG框架的应用

惰性是人类的天性,然而惰性能让人类无需过于复杂的练习就能学习某项技能,对于人工智能而言,是否可有基于惰性的快速学习的方法?本文提出一种懒惰强化学习(Lazy reinforcement learning, LRL) 算法。
2020-01-16 17:40:00745

深度强化学习的笔记资料免费下载

本文档的主要内容详细介绍的是深度强化学习的笔记资料免费下载。
2020-03-10 08:00:000

人工智能的强化学习要点

强化学习(RL)是现代人工智能领域中最热门的研究主题之一,其普及度还在不断增长。 让我们看一下开始学习RL需要了解的5件事。
2020-05-04 18:14:003117

深度强化学习的概念和工作原理的详细资料说明

深度学习DL是机器学习中一种基于对数据进行表征学习的方法。深度学习DL有监督和非监督之分,都已经得到广泛的研究和应用。强化学习RL是通过对未知环境一边探索一边建立环境模型以及学习得到一个最优策略。强化学习是机器学习中一种快速、高效且不可替代的学习算法。
2020-05-16 09:20:403149

深度强化学习到底是什么?它的工作原理是怎么样的

深度学习DL是机器学习中一种基于对数据进行表征学习的方法。深度学习DL有监督和非监督之分,都已经得到广泛的研究和应用。强化学习RL是通过对未知环境一边探索一边建立环境模型以及学习得到一个最优策略。强化学习是机器学习中一种快速、高效且不可替代的学习算法。
2020-06-13 11:39:405526

复杂应用中运用人工智能核心 强化学习

近期,有不少报道强化学习算法在 GO、Dota 2 和 Starcraft 2 等一系列游戏中打败了专业玩家的新闻。强化学习是一种机器学习类型,能够在电子游戏、机器人、自动驾驶等复杂应用中运用人工智能。
2020-07-27 08:50:15714

基于PPO强化学习算法的AI应用案例

Viet Nguyen就是其中一个。这位来自德国的程序员表示自己只玩到了第9个关卡。因此,他决定利用强化学习AI算法来帮他完成未通关的遗憾。
2020-07-29 09:30:162429

AI能在单台计算机训练 深度强化学习对处理尤为苛刻

训练最新 AI 系统需要惊人的计算资源,这意味着囊中羞涩的学术界实验室很难赶上富有的科技公司。但一种新的方法可以让科学家在单台计算机上训练先机的 AI。2018 年 OpenAI 报告每 3.4 个月训练最强大 AI 所需的处理能力会翻一番,其中深度强化学习对处理尤为苛刻。
2020-07-29 09:45:38580

什么是深度强化学习?

不过,深度神经网络系统往往需要大量的训练数据,以及已知答案的带标签样本,才能正常地工作。并且,它们目前尚无法完全模仿人类学习和运用智慧的方式。
2020-08-28 14:21:065741

一文详谈机器学习强化学习

强化学习属于机器学习中的一个子集,它使代理能够理解在特定环境中执行特定操作的相应结果。目前,相当一部分机器人就在使用强化学习掌握种种新能力。
2020-11-06 15:33:491552

83篇文献、万字总结强化学习之路

深度强化学习深度学习强化学习相结合的产物,它集成了深度学习在视觉等感知问题上强大的理解能力,以及强化学习的决策能力,实现了...
2020-12-10 18:32:50374

DeepMind发布强化学习库RLax

RLax(发音为“ relax”)是建立在JAX之上的库,它公开了用于实施强化学习智能体的有用构建块。。报道:深度强化学习实验室作者:DeepRL ...
2020-12-10 18:43:23499

强化学习在智能对话上的应用介绍

本文主要介绍深度强化学习在任务型对话上的应用,两者的结合点主要是将深度强化学习应用于任务型对话的策略学习上来源:腾讯威廉希尔官方网站 工程微信号
2020-12-10 19:02:45781

机器学习中的无模型强化学习算法及研究综述

强化学习( Reinforcement learning,RL)作为机器学习领域中与监督学习、无监督学习并列的第三种学习范式,通过与环境进行交互来学习,最终将累积收益最大化。常用的强化学习算法分为
2021-04-08 11:41:5811

模型化深度强化学习应用研究综述

深度强化学习(DRL)作为机器学习的重要分攴,在 Alphago击败人类后受到了广泛关注。DRL以种试错机制与环境进行交互,并通过最大化累积奖赏最终得到最优策略。强化学习可分为无模型强化学习和模型
2021-04-12 11:01:529

当机器人遇见强化学习,会碰出怎样的火花?

当机器人遇见强化学习,会碰出怎样的火花? 一名叫 Cassie 的机器人,给出了生动演绎。 最近,24 岁的中国南昌小伙李钟毓和其所在团队,用强化学习教 Cassie 走路 ,目前它已学会蹲伏走路
2021-04-13 09:35:092164

基于深度强化学习的路口单交叉信号控制

利用深度强化学习威廉希尔官方网站 实现路口信号控制是智能交通领域的硏究热点。现有硏究大多利用强化学习来全面刻画交通状态以及设计有效强化学习算法以解决信号配时问题,但这些研究往往忽略了信号灯状态对动作选择的影响以及
2021-04-23 15:30:5321

基于强化学习的壮语词标注方法

目前壮语智能信息处理研究处于起步阶段,缺乏自动词性标注方法。针对壮语标注语料匮乏、人工标注费时费力而机器标注性能较差的现状,提出一种基于强化学习的壮语词性标注方法。依据壮语的文法特点和中文宾州
2021-05-14 11:29:3514

基于深度强化学习仿真集成的压边力控制模型

压边为改善板料拉深制造的成品质量,釆用深度强化学习的方法进行拉深过程旳压边力优化控制。提岀一种基于深度强化学习与有限元仿真集成的压边力控制模型,结合深度神经网络的感知能力与强化学习的决策能力,进行
2021-05-27 10:32:390

一种新型的多智能体深度强化学习算法

一种新型的多智能体深度强化学习算法
2021-06-23 10:42:4736

基于深度强化学习的无人机控制律设计方法

基于深度强化学习的无人机控制律设计方法
2021-06-23 14:59:1046

基于强化学习的虚拟场景角色乒乓球训练

基于强化学习的虚拟场景角色乒乓球训练
2021-06-27 11:34:3362

使用Matlab进行强化学习电子版资源下载

使用Matlab进行强化学习电子版资源下载
2021-07-16 11:17:090

自动化学报》—多Agent深度强化学习综述

多Agent 深度强化学习综述 来源:《自动化学报》,作者梁星星等 摘 要 近年来,深度强化学习(Deep reinforcement learning,DRL) 在诸多复杂序贯决策问题中取得巨大
2022-01-18 10:08:011226

Oneflow 实现强化学习玩 Flappy Bird 小游戏

本文主要内容是如何用Oenflow去复现强化学习玩 Flappy Bird 小游戏这篇论文的算法关键部分,还有记录复现过程中一些踩过的坑。
2022-01-26 18:19:342

强化学习的基础知识和6种基本算法解释

来源:DeepHub IMBA 强化学习的基础知识和概念简介(无模型、在线学习、离线强化学习等) 机器学习(ML)分为三个分支:监督学习、无监督学习强化学习。 监督学习(SL) : 关注在给
2022-12-20 14:00:02828

ESP32上的深度强化学习

电子发烧友网站提供《ESP32上的深度强化学习.zip》资料免费下载
2022-12-27 10:31:450

7个流行的强化学习算法及代码实现

作者:Siddhartha Pramanik 来源:DeepHub IMBA 目前流行的强化学习算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。这些算法
2023-02-03 20:15:06746

强化学习与智能驾驶决策规划

一套泛化能力强的决策规划机制是智能驾驶目前面临的难点之一。强化学习是一种从经验中总结的学习方式,并从长远的角度出发,寻找解决问题的最优方案。近些年来,强化学习在人工智能领域取得了重大突破,因而成为了解决智能驾驶决策规划问题的一种新的思路。
2023-02-08 14:05:161440

彻底改变算法交易:强化学习的力量

强化学习(RL)是人工智能的一个子领域,专注于决策过程。与其他形式的机器学习相比,强化学习模型通过与环境交互并以奖励或惩罚的形式接收反馈来学习
2023-06-09 09:23:23355

ICLR 2023 Spotlight|节省95%训练开销,清华黄隆波团队提出强化学习专用稀疏训练框架RLx2

,可以节省至多 95% 的训练开销。 深度强化学习模型的训练通常需要很高的计算成本,因此对深度强化学习模型进行稀疏化处理具有加快训练速度和拓展模型部署的巨大潜力。 然而现有的生成小型模型的方法主要基于知识蒸馏,即通过迭
2023-06-11 21:40:02356

基于深度强化学习的视觉反馈机械臂抓取系统

机械臂抓取摆放及堆叠物体是智能工厂流水线上常见的工序,可以有效的提升生产效率,本文针对机械臂的抓取摆放、抓取堆叠等常见任务,结合深度强化学习及视觉反馈,采用AprilTag视觉标签、后视经验回放机制
2023-06-12 11:25:221216

强化学习的基础知识和6种基本算法解释

来源:DeepHubIMBA强化学习的基础知识和概念简介(无模型、在线学习、离线强化学习等)机器学习(ML)分为三个分支:监督学习、无监督学习强化学习。监督学习(SL):关注在给定标记训练数据
2023-01-05 14:54:05419

人工智能强化学习开源分享

电子发烧友网站提供《人工智能强化学习开源分享.zip》资料免费下载
2023-06-20 09:27:281

基于强化学习的目标检测算法案例

摘要:基于强化学习的目标检测算法在检测过程中通常采用预定义搜索行为,其产生的候选区域形状和尺寸变化单一,导致目标检测精确度较低。为此,在基于深度强化学习的视觉目标检测算法基础上,提出联合回归与深度
2023-07-19 14:35:020

模拟矩阵在深度强化学习智能控制系统中的应用

讯维模拟矩阵在深度强化学习智能控制系统中的应用主要是通过构建一个包含多种环境信息和动作空间的模拟矩阵,来模拟和预测深度强化学习智能控制系统在不同环境下的表现和效果,从而优化控制策略和提高系统的性能
2023-09-04 14:26:36295

NeurIPS 2023 | 扩散模型解决多任务强化学习问题

扩散模型(diffusion model)在 CV 领域甚至 NLP 领域都已经有了令人印象深刻的表现。最近的一些工作开始将 diffusion model 用于强化学习(RL)中来解决序列决策问题
2023-10-02 10:45:02403

什么是强化学习

强化学习是机器学习的方式之一,它与监督学习、无监督学习并列,是三种机器学习训练方法之一。 在围棋上击败世界第一李世石的 AlphaGo、在《星际争霸2》中以 10:1 击败了人类顶级职业玩家
2023-10-30 11:36:401050

已全部加载完成