引言
在许多集成电路制造步骤中,化学蚀刻仍然优于等离子体蚀刻。事实上,它能够实现更好的表面光滑度控制,这是获得足够的载流子迁移率至关重要的。在这些步骤中,光刻抗蚀剂图案保护底层材料免受蚀刻。因此,必须:1)保证光刻胶粘附,防止图案被蚀刻;2)防止蚀刻剂渗透到光致抗蚀剂/材料界面。为了避免后一种现象,了解蚀刻剂是否穿透光刻胶以及其扩散速率是至关重要的。
蚀刻垂直渗透的界面修饰已经在之前的工作中得到了证明。我们在这里重点关注蚀刻剂的扩散动力学测定。首先,研究了不同晶在248nm光刻胶堆中的扩散行为。在第二部分中,对光刻聚合物进行了结构分析,以评估聚合物密度等参数对蚀刻剂渗透的影响。
实验
本研究中使用的光刻胶层是一个聚合物双层:一个可开发的底部抗反射涂层(dBARC)和一个248nm深紫外光刻胶,涂在300mm硅晶片上。在进行抗蚀剂涂层之前,对硅晶片进行HMDS处理。红外光谱数据使用BrukerIFS55设备在多重内反射模式下获得。使用Ge棱镜。用于渗透研究的液体是去离子水和标准清洁1(SC1:氢氧化铵/过氧化氢/水)溶液。实验均是在室温下进行。
结果和讨论
为了评价这种新型测量装置的适用性,首先研究了水在光刻堆中的渗透率。对每个测量点的OH区域下的面积进行了积分,图3a中显示了ν(OH)的结果。我们观察到一种两相行为,在最初几分钟内,OH带积分面积随着水接触时间的增加而迅速增加,随后演化较慢。SC1溶液与渗透剂也观察到相同的行为(图3b)。假设第一阶段对应于水的快速渗透,直到它到达抗阻/硅界面。在第二阶段,水已经通过了整个抗阻剂层,因此以OH峰值增加为特征的吸水速度较慢。在水处理前后进行了厚度测量(表1)。没有观察到明显的变化,表明光刻胶在水暴露下不会膨胀。
然后考察了光刻胶降解对水扩散的影响。在光刻胶堆上应用n2/h2等离子体,并与未经等离子体处理的样品进行扩散行为比较。图4显示了这两种情况下的δ(OH)波段积分面积的演化。等离子处理的样品观察到更快的水渗透,可能是由于聚合物损伤,导致更容易液体渗透。
结论
我们已经开发了一种液体渗透扩散测量威廉希尔官方网站
在聚合物使用双光学MIR几何。这种威廉希尔官方网站
可以在标准工艺条件下测量直接涂在硅片上的超薄光刻胶层。我们已经将该实验装置应用于湿蚀刻步骤中蚀刻剂的扩散。
审核编辑:符乾江
评论
查看更多