

AN0001-CN01A

深圳市鼎阳科技股份有限公司 SIGLENT TECHNOLOGIES CO.LTD

版权和声明

版权

深圳市鼎阳科技股份有限公司版权所有

商标信息

SIGLENT 是深圳市鼎阳科技股份有限公司的注册商标

声明

- •本公司产品受已获准及尚在审批的中华人民共和国专利的保护
- •本公司保留改变规格及价格的权利
- •本手册提供的信息取代以往出版的所有资料
- •未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容

产品认证

SIGLENT 认证本产品符合中国国家产品标准和行业产品标准,并进一步认证本产品符合其他国际标准组织成员的相关标准。

联系我们

深圳市鼎阳科技股份有限公司

地址:广东省深圳市宝安区 68 区安通达工业园一栋&四栋&五栋

服务热线: 400-878-0807

E-mail: support@siglent.com

网址: <u>https://www.siglent.com</u>

USB 是 Universal Serial Bus (通用串行总线)的英文缩写,指连接计算机系统与外部设备的一种串口总线标准,也是一种输入输出接口的技术规范。自 1995 年推出以来,USB 以其高速、便捷、可扩展等特点,逐渐取代传统的串口和并口,被广泛地应用在各类外部设备,深受消费者的青睐。不过大量 USB 设备的互通互联为设备使用者带来极大便利的同时,难免出现连接兼容性、传输中断、文件传输错误等问题,因此 USB 设备必须通过 USB 一致性测试才能保证设备间的互操作性,这不仅是 USB 协会要求,也是包含USB 接口的设备生产商保障产品质量和可靠性的必要步骤。

↓ 2 USB2.0 基础知识

USB2.0 是一种 4 线串行系统,包括 VBus, D-, D+和地线,D-和 D+是差分信号线,是主要的信息 载体,VBus 和地线之间传输 5V 的电压。为了适应不同类型应用对数据传输速度的要求,USB2.0 定义了 三种速率级别,分别是低速、全速以及高速,典型的 USB 低速设备包括电脑鼠标、键盘,游戏机操控杆等; 而常见的全速设备包括电话、音频、麦克风等,市面上大部分 USB2.0 都属于高速设备,包括数码相机、移 动硬盘等,需要注意:高速能够向下兼容低速、全速,当然低速、全速设备也向上兼容高速设备,但是无 法实现高速的传输能力,并自动以低速一方的速度进行传输。

目前官网版本	官方市场代号	原名	标志	传输速度 (bit)	理论速度 (Byte)
	Low-Speed	USB1.0		1.5Mbps	0.1875MB/s
USB2.0	Full-Speed	USB1.1		12Mbps	1.5MB/s
	High-Speed	USB2.0	CERTIFIED USE	480Mbps	60MB/s

USB2.0具有诸多优点,如供电简单,即插即用、支持热插拔,端口扩展容易、传输方式多样化、兼容 良好等。USB系统采用级联星型拓扑,该拓扑由三个基本部分组成:主机(Host),集线器(Hub)和设 备(Device)。主机负责管理系统及应用软件,提供 USB 接口及接口管理能力的硬件、软件及固件的复合 体,可以是 PC,也可以是 OTG 设备;集线器提供扩展的 USB 外设接口,最多可级联 5 级,最多可连接 127 个 USB 设备。设备接受主机发起的操作,发送或接收数据,此外设备可以分为总线供电(即从主机获取 电流)和自供电两种方式。连接主机的端口叫上行端口,连接设备的端口叫做下行端口,集线器可以检测每 个下行端口的连接和移除,并向下层设备分配电力,负责总线的故障检测和恢复,每个下行端口可以单独 启用,可以工作在不同的速度等级,从设备到主机的方向称之为上行通信,从主机到设备的方向称之为下 行通信。

▶ 3 解决方案

3.1 测试项目

主机测试	设备	集线器
高速下行信号质量 高速下行包参数 高速下行啁啾时序测试 高速下行挂起和恢复 高速下行无驱动时的电平值 全速下行信号质量 低速下行信号质量 VBus 跌落 VBus 瞬态跌落	高速上行信号质量 带线缆的远端设备 不带线缆的近端设备 不带线缆的近端设备 高速上行包参数 高速上行包参数 高速上行有哪啾时序测试 高速上行推起和恢复 从高速进行重置 从挂起进行重置 高速上行无驱动时的电平值 高速上行接收器灵敏度 全速上行信号质量 低速上行信号质量 背板电压	高速信号质量(上/下行端口) 高速包参数(上/下行端口) 高速啁啾时序测试(上/下行端口) 高速挂起和恢复(上/下行端口) 上行端口从高速进行重置 上行端口从挂起进行重置 高速无驱动时的电平值(上/下行端口) 高速中继上/下行 高速上行接收器灵敏度 全速信号质量(上/下行端口) 低速信号质量(上/下行端口) VBus 跌落
	浪涌电流	浪涌电路 背板电压

3.2 测试设备

测试设备 测试项目	示波器 &测试夹具&软件	SMA 线缆	单端探头或差分探头或无源探头	其他
公口正日		2根	2个单端探头(下行全/低速)	
信亏质重	V	(高速)	2个单端探头及1个无源探头(上行全/低速)	
包参数	√		2个单端探头或1个差分探头	
啁啾时序测试	√		2个无源探头	
挂起和恢复	√		2个无源探头	
无驱动时的电平值	√	2根		
接收机灵敏度	√	2根	2个单端探头	信号源
从高速/挂起进行重置	√		2个无源探头	
高速中继上/下行	√		4个单端探头或2个差分探头	
浪涌电流	√			1个电流探头
背板电压	√		3个无源探头	
V/buc 胜菠	-1		1个无源探头(其它)	
VDUS 跃洛	V		2个无源探头(Hub 总线供电)	
瞬态跌落	\checkmark		2个无源探头	
备注:	单端/差分探头带宽	大于 2GHz ,ヲ	E源探头带宽为 500MHz,信号源带宽大于 1GHz	

其余设备补充:

- ▶经过认证的自供电高速集线器 (×4): 用于全速/低速测试。
- ▶ 经过认证的自供电全速集线器:用于全速/低速测试。
- ▶ 5 米长 type-A 转 type-B 的 USB 线缆 (×6): 用于全速/低速测试。
- ▶ 1 米长 type-A 转 type-B 的 USB 线缆(数量与测试项目有关):用于高速/全速/低速测试。
- ▶经过认证的低速设备(如:鼠标):用于低速测试。
- ▶ 经过认证的全速设备:用于全速测试。
- ▶ 经过认证的高速设备(如:U盘):用于高速测试。
- ▶ 计算机(安装 USBHSET):用于高速主机测试。

鼎阳科技可提供:

产品	图片	型号	描述
示波器		SDS7000A 系列	2~4GHz 带宽,支持 USB2.0/以太网/ 车载以太网等一致性分析
一致性测试软件		SDS7000A-CT-USB2	支持主机/集线器/设备的高速/全速/低 速测试
测试夹具		FX-USB2	支持主机/集线器/设备的高速/全速/低 速测试
单端探头		SAP2500	2.5GHz 带宽
差分探头		SAP2500D	2.5GHz 带宽
无源探头	105	SP3150A	500MHz 带宽,适配 SDS7000A
电流探头		CP6000 系列 SCP5000 系列	适配器供电 示波器供电
信号源		SDG7102A	1GHz 带宽

3.3 测试难点

3.3.1 测试环境搭建

USB2.0 一致性测试一般都离不开测试夹具,夹具主要将 USB 线缆信号转化为能够通过探头输入至示 波器的信号,被测物分为主机、集线器、设备三种,速度也分为高速、全速、低速三种,每个测量项目都 需要测试夹具、被测物和示波器三者之间建立正确的连接方式,仅靠人脑记忆,不仅效率降低,正确率也 不敢保证,而一致性测试软件就能很好地解决这个难题,它以图表化的方式显示各个测量项测试过程中夹 具、示波器和被测物三者之间的连接方式,使用者无需记忆就能正确设置测试环境,能够明显减少测试时 间及测量出错的概率。

3.3.2 测试码型的获取

对于主机

- ▶ 非 Windows 操作系统的主机需联系芯片供应商,提供特定的控制软件,控制被测物发出测试码型
- ➤ Windows 操作系统的主机可使用 HSETT 软件(USB High-speed Electrical Test Tool),该软件可以控制被测物发出测试码型

对于集线器和设备

- ▶ 使用 HSETT 软件可以控制被测物发出测试码型
- ▶ 鼎阳提供的测试夹具 FX-USB2 可直接控制被测物发出测试码型

主机测试码型获取步骤:

软件安装:安装前,应禁用 Windows 中的"用户账户控制",选择开始 > 控制面板 > 用户账户
 与家庭安全 > 用户账户 > 更改用户账户控制设置,设置为"从不通知",点击"确定",然后
 重启计算机。

软件下载地址: https://www.usb.org/document-library/usbhset-ehci-64-bit

😌 用戶帐户控制设置			5	<u>–</u>	×
选择何时	通知你有关计算机	更改的消息			
用户帐户控制	月前于预防有害程序对你 中控制设置的详细信息	尔的计算机进行更改。			
始终通知					
-	- 出现以下	情况时始终不要通知我:			
	 应用 我更 	尝试安装软件或更改我的计 改了 Windows 设置	算机		
-	.				
-	- ① 不推	荐。			
从不通知					
			\$ 3	定 取消	

注意: 使用 USBHSETT 软件时,相应的 USB 集线器会被占用,其外界的设备将无法正常使用,如外接的鼠标,但可使用触控板或远程控制

设置测试类型:打开 High-speed Electrical Test Tool 软件,进入软件主菜单;点击【Host Controller/System】,点击【Test】按钮进入主机测试菜单。

🛃 EHCI HS Electrical Test Tool	•••
Select Type Of Test	Select Host Controller For Use In Testing
C Device	PCI:?0 ? 26 嫧 0 2 Ports
C Hub	
Host Controller/System	
TEST	Exit

▶ 总线枚举:将主机的被测端口插上 USB 设备(USB 设备的速率类型与被测主机的速率类型一致),

点击 【Enumerate Bus】,右侧状态窗口显示"Enumeration Successful"

Gelect Downstream Device	Host Port Control	Select Downstream Device	Host Port Control
IONE 1D 0x8087, PID 0x8000, Address 1, Port 1	Port Control Port	NONE VID 0x8087, PID 0x8000, Address 1, Port 1	Port Control Port
	Status Window Disconnect Notify	VID 0x325d, PID 0x6310, Address 2, Port 1	Status Window Disconnect Notify
	Enumeration Successful		Enumeration Successful
Enumerate Bus		Enumerate Bus	
Downstream Device Control		Downstream Device Control	
	EXECUTE Return To Main	NONE V	EXECUTE Return To Main

端口控制: "Host Port Control"中 "Port"输入主机被测试端口号, "Port Control"下拉菜单的选择与测试项有关,如测试信号质量选择【TEST_PACKET】,测试挂起和恢复选择【SUSPEND】,测试无驱动时的电平值选择【TEST_J】,点击【EXECUTE】,右侧状态窗口显示"Operation Successful"

EHCI HS Electrical Test Tool - Host Test	
Select Downstream Device NONE VID 0x8087, PID 0x8000, Address 1, Port 1 VID 0x325d, PID 0x6310, Address 2, Port 1	Host Part Control Port Control Port EST_PACKET Disconnect Natify
Enumerate Bus	Operation Successful
Downstream Device Control Address	EXECUTE Return To Main

 测试码型显示:除去接入主机被测端口上的 USB 设备,使用 USB 线缆连接被测端口与测试夹具 (夹具已与示波器相连),此时示波器将显示测试码型

更多 USBHSETT 使用技巧或使用过程中出现问题请点击:

https://www.usb.org/sites/default/files/HSETT_Instruction_0_4_1.pdf

3.4 测试步骤

点击测试项配置会弹出具体的测试窗口,如下图所示,根据测试流程分为:设置、测试项选择、配置、 连接、启动测试、结果六个步骤。

3.4.1 设置

- 配置具备"调出"、"上一次"、"保存"三个功能
- 在 "DUT 类型"中选择待测设备的类型,其中集线器还需要区分"下行"、"上行"
- 在"速率选择"中选择待测设备的速率

测试项配置							
测试流程	设置	测试项选择	配置 连接	启动测试	结果		
	配置:						
🕕 设置	调出	1 L	一次(禄存			
	DUT类型:				方向:		
•	○主机	●集线	器 〇设备		〇下行	●上行	
🚺 测试项选择	速率选择:						
	高速	〇全速	○低速				
0 配置							
Ļ							
×							
✓ 注接							
Ļ							
↓							
① 结果							

3.4.2 测试项选择

在本栏目中选择需要测试的项目,可选择单项也可选择多项

測试项配置		X
测试流程	设置 测试项选择 配置 连接 启动测试 结果	
1 设置	 ▼ ○ 年线器上行側试项 ▶ ○ ○ 高速上行信号质量 ▶ ○ ○ 高速上行包参数 	
● 测试项选择	 ▶ ○ ○ 高速上行明晰时序測试 ▶ ○ ○ 高速上行挂起和恢复 ▶ ○ ○ 从高速进行重置 	
	 ▶ ♥ ○ 以挂起进行重置 ▶ ♥ ○ 高速上行无驱动时的电平值 	
10 配置	▶ ○ ○ 高速中継器上行 ○ 背板电压 ○ 背板电压	
▼ <i>─</i> ∕ 连接		
•		
启动测试		
+		
1 结果		

3.4.3 配置

前面选择的测试项目在本栏目会高亮提示,点击即可对相应的测试项进行配置,设置好示波器测量的 信道。

3.4.4 连接

本栏目显示测试接线图与测试步骤,若一次性选择了多个测试项目,只会显示第一个待测项的信息, 其他测试项接线图会在上一个测试项结束后有单独的页面弹窗提示。

3.4.5 启动测试

- 测试失败时,支持"继续"和"中止"两种选择
- 对于本轮测试的结果,提供测试结果的保存形式

● 点击右下角的启动测试即可开始本轮测试

測试项配置					da.		×
测试流程	设置	测试项选择	配置	连接	启动测试	结果	
() 设置	测试失败 ●继续	牧时:	0中止				
Ļ	测试结界 ● 当前	ł:	○追加				
⑦ 测试项选择							
¥							
11 11 11 11 11 11 11 11 11 11 11 11 11							
•							
🥢 连接							
							启动测试

在接下来的测试过程中,按照弹窗提示完成测试即可,测试项全部完成后会弹出测试结果。若一轮测试中选择了多个测试项目,进行到下个项目时会有弹窗提示该项目的接线方式,支持中途返回"配置" 栏目修改该测试项的信源,修改后点击弹窗中的"启动测试"即可继续测试。

3.5 测试结果

点击"结果查看",查看对应的测试结果。

上半部分是测试项目,提供各个项目的测试结果,官方要求的门限值参考。下半部分是对应的细节图,在 上半部分点击感兴趣的项目,下半部分即可显示对应的细节,点击图片可以查看图片细节。

會功能 □ 量	安越 🖣 轩采 m 示	# 光标 📐 渕量	M 数学 回 分析		4GHz-12Bit SIGLENT Stop 500Mpts Memory ((C2) = 36.81346Mi	Az 8 :	一致性谢试
						一致性	测试
结果		测试项	当前值	余量	通过判断标准	on	off
通过	EL2 信号质量:数据率		479.881MHz	25.29%	479.76MHz < Value < 480.24MHz	协议类	12
信息提示	抖动		0.02ns		Info only, ref eye mask	USB2	o ~
信息提示	K抖动		0.00ns		Info only, ref eye mask	8	制试场配置
信息提示	K/J抖动		-0.04ns		Info only, ref eye mask		
通过	EOP宽度		8.0bits		Value > 7.5bit	*	结果查看
警告	EL6 信号质量:上升时间		0.31ns		Value > 300ps:Pass, 100ps < Value < 300ps:Warning, Value < 100ps:Fail		
警告	EL6 信号质量:下降时间		0.42ns		Value > 300ps:Pass, 100ps < Value < 300ps:Warning, Value < 100ps:Fail	. 0 -	报告生成设置
通过	EL7 边沿单调性		OmV		Value < 50mV		
通过	模板测试				Fail Num = 0		
			细节:EL2 信号质量:数	据率			
当前伍		479.881MHz					
平均值		479.88138MHz					
263.2/最小值		479.881MHz					
最大值		479.881MHz					
峰峰值		OkHz					
55 · · · · · 标准差		OkHz		X	X		
统计次数							
通过判断标准		479.76MHz < Value < 480.24MHz					
余量		25.29%					
-394.8c结果							
-526,4mV			0.400 us	0,600 us	0,200a 1,200a 1,200a 1,40		
C1 0050 002 132mV/ FULL 0.00V FULL	200mV/ . 0.00V				时基 #数 600ns 200ns/div 得业 20.0kpts 10.0c5a/s 脉觉	0200 250mV 负缺问	2023/10/12

3.6 测试报告

点击"报告生成设置",填入有关的测试信息,选择报告类型;"预览报告"可以提前查看生成报告的效果; "文件管理"中选择保存的路径,点击"保存"即可保存测试结果。

注意:保存成 HTML 格式时,会生成一个文件夹与 HTML 文件,如需拷贝,需要把两者都拷走,并保持两者在同一路径下。

点击测试项可直接超链接至具体测试波形:

▲ 4 小结

作为产品出货前的重要环节,USB2.0一致性测试在今天的各种产品研发和制造中扮演着重要的作用, 必然会带来巨大的工作量,而鼎阳科技的USB2.0一致性测试解决方案一直在朝着更加简单,更加标准化, 更加自动化的方向发展,它消除了麻烦耗时的手动示波器设置、光标放置及与USB 2.0 规范比较测试结果 的过程,通过简单的配置方式、易懂的图表化连接指南帮助使用者降低测试复杂程度,提高生产效率。

关于鼎阳

鼎阳科技(SIGLENT)是通用电子测试测量仪器领域的行业领军企业, A股上市公司。

2002年,鼎阳科技创始人开始专注于示波器研发,2005年成功研制出 鼎阳第一款数字示波器。历经多年发展,鼎阳产品已扩展到数字示波 器、手持示波表、函数/任意波形发生器、频谱分析仪、矢量网络分析仪 、射频/微波信号源、台式万用表、直流电源、电子负载等基础测试测量 仪器产品,是全球极少数能够同时研发、生产、销售数字示波器、信号 发生器、频谱分析仪和矢量网络分析仪四大通用电子测试测量仪器主 力产品的厂家之一,国家重点"小巨人"企业。同时也是国内主要竞争 对手中极少数同时拥有这四大主力产品并且四大主力产品全线进入 高端领域的厂家。公司总部位于深圳,在美国克利夫兰、德国奥格斯堡 、日本东京成立了子公司,在成都成立了分公司,产品远销全球80多个 国家和地区,SIGLENT已经成为全球知名的测试测量仪器品牌。

联系我们

深圳市鼎阳科技股份有限公司 全国免费服务热线:400-878-0807 网址:www.siglent.com

声明

SIGLENT[™] № 是深圳市鼎阳科技股份有限公司的注册商标,事先未经过允许,不得以任何形式或通过任何方式复制本手册中的任何内容。
本资料中的信息代替原先的此前所有版本。技术数据如有变更,恕不另行通告。

技术许可

对于本文档中描述的硬件和软件,仅在得到许可 的情况下才会提供,并且只能根据许可进行使用 或复制。

