电子产品越来越轻薄短小,电子零件的集积度也就越来越高,而电源、接地噪声(Noise)与信号(Signal)及其彼此间的耦合(Coupling)现象,也变成了电子产品在设计时,主要而必须克服的关键因素。而这些无论是来自于系统外部,或是来自于系统本身的噪声或信号,对信号间的辐射(Radiation)或传导(Conduction)干扰问题,若在30MHz到1GHz的频率范围,就是所谓的电磁干扰(EMI, Electromagnetic Interference)问题;当影响到了更高频的无线传播频率区段(RF, Radio Frequency)时,则又称为无线频段干扰(RFI, Radio Frequency Interference)的问题。而在便携式产品中,RFI的问题更严重影响到了产品的通信质量。
要解决这些烦人的电磁干扰问题,首先从大的方向来分类,可分为信号完整性(SI, Signal Integrity)的问题,以及电源完整性(PI, Power Integrity)的问题。在实务的测量解析上,会使用到近场(Near Field)测量的除错模式(Debug Mode),及远场(Far Field)测量的验证模式。如果对于产品的组件特性及边界条件掌握度够高,也可以用仿真软件(如ANSYS、Keysight、CST.。.等公司所提供的电磁interwetten与威廉的赔率体系 工具)来做模拟验证与预测。若要对产品中各组件在各种运作下的特性进一步了解,还会使用时频(Time-Frequency)的数值分析方法(如FFT, HHT, enhance-Morlet Transfer.。.等)。在产品的设计实务上,要解决这些问题的手法,不外乎必需使用到滤波(Filter)、移频(Moving Resonant Frequency)、展频(SSC, Spread Spectrum Clock)。..等手法。展频的手法,在现今的科技多已做入了集成电路(IC, Integrated Circuit)中,大多与频率相关的集成电路都会有展频的设计,主要用在解决信号在线的主频能量太强之问题。移频则是一种较笼统的解决方案之说法,主要目的是把有问题的频率极点位置,移开出目前所在意的频段范围。但是如何找到问题率频点,大多只能仰赖仿真工具来找出频率响应(Resonant)点,才能再想对策(如加滤波组件或改变线宽、线长或方向)来重新布局。但是,由前面所提及的解析注意要项中可知,如果对组件特性及边界条件不够完整的情形下,非常容易变成了GIGO(Garbage In Garbage Out)的结果。而使用滤波器则是最为直观且直接的解决手法,当然其中也蕴含有移频的意味存在,然而各种滤波器却有各自的使用方法及限制。
在解决EMI/RFI问题时,最常使用到的滤波器如图一所示,都是属于低通滤波装置。
其中π型滤波器(π-Model Filter)是最有效率而简单的滤波装置,一般常用的整合性产品又分为CLC及CRC两种类型,如图二所示。CLC滤波装置可以选择对主频率衰减影响最小为考虑,其最主要是用在当系统内部的信号在做传递时,当只需要对其高频的倍频谐波(Homonic)做滤波处理时,能使主频能量尽量保持原大小,而将高频信号滤除。而CRC类型的滤波器,则主要会使用在系统的接口端,可以具有能选择较佳阻抗匹配(Impedance Match)的特性,有效降低因为阻抗不匹配所造成的二次干扰问题。无论那种滤波装置,要考虑滤掉的频率能量是多或是少,还必需考虑信号的倾斜(Skew)及抖动(Jitter)问题来做决定,因此不一定是把所有的高频信号滤掉越多才会越好,有许多时候适当的保留3倍频及5倍频甚至7倍频信号能量,会使得眼图(Eye Diagram)更佳。
然而,在差动信号(Differential Signal)的处理上,正端与负端的信号必需相位差180度的完整信号才能得到最佳的眼图。而来自电源及地端的偶数倍频谐波或是共模噪声(Common-Mode Noise)都会造成差动信号的失真,参考图三中左侧的信号。要解决这个问题,主要就是使用共模型式的滤波抑制器(Common-Mode Choke),利用小信号在电感信号抑制器中,共模信号会被抵消的方式,来过滤掉共模噪声,如图三说明所示。
然而使用图三中的共模滤波(Common-Mode Filter)装置,由于差模信号上相当于也会看到了L型(L-Model)滤波效应,因此使用这种滤波器件必需同时看差模与共模的滤波频段,两者的滤波效果是不同的。到此可以发现,以上两类型的滤波装置都是用来解决信号上的噪声问题。而且,有许多机会是用在产品的接口端,那么静电放电的问题在此也不容被忽视。因此,晶焱科技整合了其系统级的静电防护威廉希尔官方网站 与这些信号滤波产品做了一个完美的结合,如图二及图三中含有TVS(Transient Voltage Suppressor)的滤波装置,就是用来同时有效解决静电及滤波的问题的产品。另外,在使用这些滤波器件时,所需注意的不再是电容的大小,而必须在意信号的传输损耗(Insertion Loss)以及反射损耗(Return Loss),在S参数中的这些信息才代表有多少能量的信号可以传递或反射,藉此信息选择适合的主要频点及要滤波的强度。
在电源及接地部份,系统的印刷电路板(PCB, Printed Circuit Board)中的小信号返回路径(Return Path),为EMI辐射的最主要磁耦极天线(Magnetic Diople Antenna)路径。良好的多层板接地面设计虽然可以降低返回路径的面积,但是如果仅使用不具有减震效果的电容器,再加上在系统内未能设计出良好真实的接地点位置,这样反而会将电源噪声带到了整个接地面,而造成了宽带(Broad Band)噪声。但是,如果使用RC减震器(Snubber),那么就必须要调整RC值到能过滤的频段,这又是另外一项艰难的任务。另一方面,由于主芯片(Main Function Chip)的内部电路设计又会有倍频、除频等需求的设计存在。因此,许多的各种奇、偶倍频小信号能量,就变成了噪声而载波在电源上。再经由系统上的电源及接地设计,而辐射或传导到PCB的各个位置。而在这些繁多集成电路的复杂运作下,又造成这些噪声能量,在主芯片电源接点附近之电压、电流单频信号不再是90度(可用电容或电感降噪)或0度(电阻特性)的相位差。但是单纯的电容或电感的使用下,电压或电流小信号仅能做90度的相位加减。但是,当电压电流相位差不再是90度或0度时,那么使用电容或电感,有时反而使得一些单频噪声更加强,如图四所示是个复杂的迭加(Superposition)效应。
此外,电容的使用也必须注意它有一定的使用频段范围,在超过它的频率返折点后,它就变成电感了,如图五所示。而在频率返折点附近,也会有极点(Pole)问题存在。
晶焱科技为解决以上之问题,利用分支电流的特性,设计出具有能在宽带带范围中,同时侦测电压、电流小信号,并能调变其间的相位差,而做出滤波减震芯片。除具有电源滤波效果外,也可以减低噪声传导到地的能量。并将其设计成电容之大小型式,以方便工程师在产品开发最后阶段的验证时,能够有除了电容以外的最佳而方便的选择,以追求产品量产的时效性(Time To Market)。在便携式产品中的RFI问题,就如同在处理电源噪声问题一般。有些状况是:RF信号原是用来接收使用,但它们一样会耦合到了电源端,而造成部份其它的功能性芯片的失常;另一些情形是:一些功能性芯片(例如摄像头。..等)的倍频信号或电源噪声,耦合到Base Band或RFIC的电源、信号或天线中,而造成这些芯片的功能暂时失效或错误。
欲解决便携式产品的电磁干扰问题,首先第一步须对PI的问题做初步的解析。对于电源及接地的布局,最好能针对各电源抽出各层次来与接地层做重迭审视,对于一些返回路径确认是否己下了对的解决方案。另外,对产品中电源及接地布局,最好能使用模拟工具确认其阻抗特性(Z-Frequency Characteristics)之极点位置,要能尽量避开敏感的频段位置。其次必须确认产品信号上的SI问题(如Impedance Match, Interconnection Bandwidth, Insertion Loss, Return Loss, Cross Talk, Propagation Delay.。.等)是否都已调校好,藉由测量工具确认问题点,选择合适的信号滤波装置。在处理SI问题时,若有再发现一些偶数倍频的问题时,再回头确认一下是共模问题或是电源及接地部份的问题,检验其来源,加上对的滤波对策。能够对产品的SI及PI做了完善的布局解析,并对各式滤波装置的应用特性有充份的了解,选择对的滤波器件,这样对于解决电磁干扰问题就能事半功倍。
评论
查看更多