VLSI是超大规模集成电路的简称,本内容介绍了VLSI的定义概述,并对VLSI测试威廉希尔官方网站
进行了展望,介绍了VLSI可靠性威廉希尔官方网站
的应用和发展
超大规模集成电路(Very Large Scale Integration)
集成电路(integrated circuit,港台称之为积体电路)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。 它在电路中用字母“IC”(也有用文字符号“N”等)表示。
超大规模集成电路(Very Large Scale Integrated circuits:VLSI)
在一块芯片上集成的元件数超过10万个,或门电路数超过万门的集成电路,称为超大规模集成电路。超大规模集成电路是20世纪70年代后期研制成功的,主要用于制造存储器和微处理机。64k位随机存取存储器是第一代超大规模集成电路,大约包含15万个元件,线宽为3微米。
目前超大规模集成电路的集成度已达到600万个晶体管,线宽达到0.3微米。用超大规模集成电路制造的电子设备,体积小、重量轻、功耗低、可靠性高。利用超大规模集成电路威廉希尔官方网站 可以将一个电子分系统乃至整个电子系统“集成”在一块芯片上,完成信息采集、处理、存储等多种功能。例如,可以将整个386微处理机电路集成在一块芯片上,集成度达250万个晶体管。超大规模集成电路研制成功,是微电子威廉希尔官方网站 的一次飞跃,大大推动了电子威廉希尔官方网站 的进步,从而带动了军事威廉希尔官方网站 和民用威廉希尔官方网站 的发展。超大规模集成电路已成为衡量一个国家科学威廉希尔官方网站 和工业发展水平的重要标志,也是世界主要工业国家,特别是美国和日本竞争最激烈的一个领域。
VlSI测试威廉希尔官方网站 展望
a) 指数上升的芯片时钟频率对芯片测试的影响。
研究表明,全速测试远比在较慢的时钟频率下进行的测试有效得多。对于高速电路,全速测试或者基于时延故障模型的测试,将越来越重要。显然,要实施全速测试,ATE必须能够以不低于被测电路的时钟频率工作。然而,高速的ATE非常昂贵。根据2000年的数据,一个能以1GHz的频率施加测试激励的ATE,每增加一个测试管脚其价格就上升3000美元。因此,用这样的测试仪进行高速测试的费用也很高。于是,半导体工业面临两个矛盾的问题。一方面,世界上大多数厂家的测试能力仍然只允许进行100MHz左右的时钟频率测试;另一方面,许多需要测试的芯片的时钟频率已经达到或超过了1GHz。
此外,在GHz的时钟频率下,线的电感开始活跃起来,电磁干扰(Electromagnetic Interference,简称EMI)测试是高速芯片对测试的另一个需求。需要定义考虑电磁作用的、包括软错误模型(soft error model)在内的新的故障模型以及测试方法。
b) 不断增加的晶体管密度对芯片测试的影响。
VLSI芯片晶体管的特征尺寸大约以每年10.5%的速度缩小,导致晶体管的密度大约以每年22.1%的速度增加。由于芯片I/O管脚的物理特性必须维持在宏观级别上,以确保芯片的连接和电路板的制作;而硅片的特征尺寸已经迅速地从微米级升级到纳米级。换句话说,芯片I/O和板级接口的规模升级与内部电路不一致,导致了晶体管数与管脚数的比值飞速增长。使得从芯片的管脚来控制芯片内部的晶体管变得越来越困难,这种有限的访问内部晶体管的能力给芯片测试带来了极大的复杂度。
晶体管密度的增加也带来了单位面积功耗的增加。首先,芯片设计时就要考虑功耗的验证测试;其次,施加测试时必须小心调整测试向量,避免过大的测试功耗将芯片烧坏;最后,可能需要降低晶体管的阈值电压来减少功耗,随之带来的漏电流的增加会使得IDDQ测试的有效性降低。
c) interwetten与威廉的赔率体系 和数字设备集成到一个芯片上对测试的影响。
通过将模拟和数字设备集成到一个芯片上,提高了系统的性能,但也带来了片上混合信号电路测试的新课题。SOC对测试的影响主要体现在下面几个方面:
i. 需要了解和分析穿过工艺边界(数字和模拟之间、光和射频电路之间等)的工艺过程变化(process variation)和制造引起的缺陷。
ii. 需要研究SOC的高层抽象模型,以获得可以接受的模拟速度和模拟精度。需要在非常高的抽象层次捕获模拟电磁效应。
iii. 系统芯片上互连线将成为影响芯片延迟性能的主要成分。互连线延迟比逻辑门的延迟更重要,并且将日益变得越来越重要。
iv. 需要研究数字、模拟、微电机(Micro-Electromechanical,简称MEM)和光学系统的有效行为模型。
v. 需要发明针对光学、化学和微电机系统故障的新的诊断威廉希尔官方网站 。
vi. 由于SOC采取混合工艺,需要有预言穿过工艺边界的热应力和机械应力的能力。
人们需要新的测试激励产生算法,为SOC组件产生低成本高覆盖率的数字和模拟测试激励和波形。简单的故障模型,即目前最受欢迎的固定型故障模型已经远不能覆盖现实的物理缺陷,必须辅助以时延故障模型、IDDQ提升的电流故障模型以及其他各种不同的模型,实施多样化的测试。SOC设计面临扩展的DFT和BIST、性能验证、调试和早期芯片原型通过DFT和BIST的诊断。为降低测试成本所做的各种努力将持续成为SOC测试的重要课题。
评论
查看更多