对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。 能够实现这种比较功能的电路或装置称为比较器。 比较器是将一个interwetten与威廉的赔率体系 电压信号与一个基准电压相比较的电路。比较器的两路输入为模拟信号,输出则为二进制信号0或1,当输入电压的差值增大或减小且正负符号不变时,其输出保持恒定
可以将比较器当作一个1位模/数转换器(ADC)。运算放大器在不加负反馈时从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。而且,一般情况下,运算放大器的延迟时间较长,无法满足实际需求。比较器经过调节可以提供极小的时间延迟,但其频响特性会受到一定限制。为避免输出振荡,许多比较器还带有内部滞回电路。比较器的阈值是固定的,有的只有一个阈值,有的具有两个阈值。
滞回电压比较器
滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。
滞回比较器也有反相输入和同相输入两种方式。
UR是某一固定电压,改变UR值能改变阈值及回差大小。 以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性
图4 滞回比较器及其传输特性 (a)反相输入;(b)同相输入
1,正向过程
正向过程的阈值为
形成电压传输特性的abcd段
2,负向过程
负向过程的阈值为
形成电压传输特性上defa段。由于它与磁滞回线形状相似,故称之为滞回电压比较器。 利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值
两个阈值的差值ΔUTH=UTH1–UTH2称为回差。
由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。
图5 比较器的波形变换 (a)输入波形;(b)输出波形
例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。根据传输特性和两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。
图6 说明滞回比较器抗干扰能力强的图 (a)已知传输特性;(b)已知ui 波形; (c)根据传输特性和ui波形画出的uo波形
滞回比较器的工作原理
滞回电路里面一般Vol和Voh相等(图中运放工作原理就是两端电压比值大小)当输出Vo是高电平Voh时,V+端电压等于(Voh-Vref)/(R1/(R1+R2),只要V-小于此时V+,则Voh保持不变,大于时刻发生突变 Vo变成低电平Vol,此时V-在继续增大的话,Vo保持低电平不变化,同时V+处电压变化(VoL-Vref)/(R1/(R1+R2);
当V-输入减小,必须减少到V+变化后的值才能发生电压跳变,成为高电平Voh,这就形成了滞回电路的效果。
评论
查看更多