0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

博世互联科技有效延长电动汽车电池使用寿命

博世资讯小助手 来源:yxw 2019-07-11 16:00 次阅读

“压力加速细胞老化”,这一由遗传学家们通过长期临床实践得出的原理同样适用于电动汽车电池的使用寿命领域。具体而言,电池越老,其性能越弱,容量越低,车辆续行里程数也越短。

为延长电池续航时间,博世正致力于开发新的云服务,以补充并优化电动汽车的电池管理系统。“博世将电动汽车电池与云端互联,这一基于数据的服务将大幅提升电池性能并延长其使用寿命,” 博世集团董事会成员Markus Heyn博士表示。

博世将电动汽车电池与云端互联

云端的智能软件功能可持续分析电池状态,并积极采取适当措施,以防止或减缓电池老化。电池作为电动汽车部件中最昂贵的部分,这些措施能有效将其损耗率降低20%。其中,从车辆及其周围环境收集到的实时数据在措施选用过程中起到关键作用。博世的云服务分析利用实时数据,优化每一个充电过程,并通过仪表显示屏为驾驶员提供个性化驾驶提示,以有效节约用电量。博世将这一新服务命名为“云端电池”。

世界领先的移动出行服务提供商滴滴将计划与博世探索电池服务的合作,为其出行服务网络里的电动车优化电池的使用寿命,进而提高司机及运营商的满意度。

精确的实时分析

据专家介绍,目前锂离子电池的平均使用寿命为8-10年或500-1000次充电周期。此外,电池制造商通常保证其电动汽车电池续行里程在10万到16万公里之间。但是,快充、充电周期过于频繁、过度使用运动驾驶模式以及过高或过低的环境温度都将加重电池压力,加速电池老化。

博世基于云的服务旨在快速识别和积极应对这些压力触发因素。博世云服务将采集所有电池相关的数据,例如当前环境温度和充电习惯,实时传输到云端,再通过云端的机器学习算法进行精准数据评估。通过一系列计算,博世不仅能为驾驶员提供一个了解电池当前状态的窗口,并将首次实现对电池当前性能及其剩余使用寿命的可靠预测——而过去,人们无法对电动汽车电池的耗损速度做出准确判断。

博世将首次实现对电池当前性能

及其剩余使用寿命的可靠预测

Markus Heyn博士表示:“性能强大、使用寿命长的电池将使电动汽车的推广更具可行性。”博世云服务的另一特点是采用集群原则:并不停留于采集单一车辆数据,而是分析评估整个车队的数据,从而选择更为精准有效的算法进行电池评估。利用集群智能是实现更迅速、更全面地识别汽车电池压力因素的关键。

减缓电池老化

博世对电池实时状态的新洞察能够有效延缓电池老化。例如,在过高或过低的环境温度下,处于饱和状态的电池更易老化。因此,为避免电池在太热或太冷时充电到100%,博世的云服务会实时将电池额定电量降低几个百分点,以避免电池意外损耗。

其次,储存在云中的数据将有助于电池维修及养护。例如,一旦电池出现故障或缺陷,驾驶员或车队操作员就将获取即时通知,这一服务有助于避免电池发生无法挽回的损失、提高电池在完全停止工作之前被修复的可能性。

最后,博世的云服务还有助于优化充电过程。由于充电过程存在着令电池永久丧失部分性能和容量的危险,通常被视作电动汽车市场规模化的最大障碍之一。博世云端的智能软件可以分别统计每次充电过程的充电曲线,这将保障无论是在家里还是在其他地方充电,电池可以始终充电到最佳水平,以维护电池性能。

博世的云服务有助于优化充电过程

目前市场上的充电计时器应用程序只针对充电过程进行计时,提醒驾驶员在电池电力较低时及时充电。博世智能充电解决方案作为其新电池服务的一部分,将创新型地优化充电过程,精准区分快充电和慢充电,并在充电过程中控制电量和电压水平,从而有效延长电池使用寿命。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12073

    浏览量

    231165
  • 博世
    +关注

    关注

    11

    文章

    424

    浏览量

    74639
  • 电池
    +关注

    关注

    84

    文章

    10565

    浏览量

    129538

原文标题:博世互联科技有效延长电动汽车电池使用寿命

文章出处:【微信号:bsmtxzs,微信公众号:博世资讯小助手】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    斯坦福研究:电动汽车电池实际寿命比预估长得多

    据外媒报道,尽管电动汽车免除了频繁加油的高额开销,但在保险费用和电池替换成本方面仍面临挑战。最近的一项研究表明,电动汽车的实际使用寿命可能比预估的要长得多,这一发现为众多
    的头像 发表于 12-11 17:24 258次阅读

    电动汽车电池11大误解的解答

    近几年,电动汽车威廉希尔官方网站 快速发展,尤其是其电池威廉希尔官方网站 ,本文将探索关于电动汽车(EV)电池——这一汽车行业中最具前景的新威廉希尔官方网站 之一——的11个最常见误
    的头像 发表于 11-07 17:18 881次阅读

    干簧继电器:如何引领电动汽车性能飞跃?

    干簧继电器使用寿命长且通用性强,是电动汽车隔离检测的理想之选
    的头像 发表于 10-31 10:44 2743次阅读
    干簧继电器:如何引领<b class='flag-5'>电动汽车</b>性能飞跃?

    一文看懂如何有效延长直插色环电感的使用寿命

    一文看懂如何有效延长直插色环电感的使用寿命 编辑:谷景电子 直插色环电感因为在电子设备中的普遍应用,市场需求持续旺盛。我们要了解怎样正确选型、处理异常情况等问题。另外,有些人关注直插色环电感
    的头像 发表于 10-28 18:18 176次阅读

    固态电池使用寿命

    固态电池使用寿命是一个受到多方因素影响的复杂问题,以下是对其使用寿命的详细分析:
    的头像 发表于 09-15 11:53 2736次阅读

    电动汽车驱动功率限制怎么处理

    的原因 2.1 电池性能限制 电动汽车的驱动功率主要来源于电池,而电池的性能直接影响到电动汽车的驱动功率。目前,
    的头像 发表于 07-17 14:57 1576次阅读

    电动汽车四个常用BMS拓扑结构

    、可靠和有效运行,同时优化电池的整体效率和寿命电动汽车BMS分为两类,即低压(LV)和高压(HV)。低压电池管理系统(LVBMS)主要用
    的头像 发表于 06-05 09:09 4017次阅读
    <b class='flag-5'>电动汽车</b>四个常用BMS拓扑结构

    电动汽车的7种充电方法,哪种方法可以延长电池使用寿命

    动力电池作为电动汽车的动力来源,电池性能一直是限制电动汽车大规模应用的重要因素之一,因此选择一种能够快速充电且不对电池
    的头像 发表于 04-15 15:26 4011次阅读
    <b class='flag-5'>电动汽车</b>的7种充电方法,哪种方法可以<b class='flag-5'>延长</b><b class='flag-5'>电池</b><b class='flag-5'>使用寿命</b>

    安世半导体电池管理IC:延长电池使用寿命,优化脉冲负载峰值电流

    Nexperia(安世半导体)的电池寿命增强器 IC 不仅延长纽扣电池寿命,还能提高电池的可用
    的头像 发表于 04-08 14:24 759次阅读

    储能BMS与电动汽车BMS深度解析

    超过30%。锂电池凭借高能量密度、长循环寿命等优势,已成为行业主流应用,而BMS作为电池的“大脑”,具有电压、电流、温度监测,SOC/SOE状态管理和控制等功能,可有效避免
    发表于 03-08 15:01 1315次阅读
    储能BMS与<b class='flag-5'>电动汽车</b>BMS深度解析

    磷酸铁锂电池充电正确方法 磷酸铁锂电池使用寿命

    磷酸铁锂电池充电正确方法和使用寿命 磷酸铁锂电池是当今最为广泛使用的一种锂离子电池类型。它具有高能量密度、长循环寿命、良好的安全性等特点,成
    的头像 发表于 01-31 14:44 1.9w次阅读

    日产汽车计划为电动汽车生产磷酸铁锂电池

    日产汽车近日宣布,计划为电动汽车(EV)生产磷酸铁锂(LFP)电池。这一决策源于对降低成本、提高安全性和延长电池
    的头像 发表于 01-29 11:38 778次阅读

    用于电动汽车锂离子电池组的先进过温检测解决方案

    TTape通过提供检测每个锂离子电池过热的独特能力,带来了电动汽车行业的革命,提高了卓越的安全性并延长电池寿命
    的头像 发表于 01-24 09:07 898次阅读

    增程式电动汽车电气架构

    REEV)是一种结合了内燃机和电动机的混合动力汽车,其主要特点是在电池电量耗尽后,可以通过内燃机为电池充电,从而延长行驶里程。本文将对增程式
    的头像 发表于 01-09 17:18 1470次阅读
    增程式<b class='flag-5'>电动汽车</b>电气架构

    电动汽车电池自放电深度分析

    电动汽车电池自放电深度分析 电动汽车电池的自放电是指在未使用的情况下,电池内部的电荷会逐渐流失,从而减少
    的头像 发表于 01-04 10:46 1250次阅读