摘要
作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet的应用页面,按照推荐设计搭建外围完事。如此一来即使应用没有问题,却也忽略了更多的威廉希尔官方网站 细节,对于自身的威廉希尔官方网站 成长并没有积累到更好的经验。今天以一颗DC/DC降压电源芯片LM2675为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC行业的同学随便看看就好,欢迎指教!
LM2675-5.0的典型应用电路
打开LM2675的DataSheet,首先看看框图
这个图包含了电源芯片的内部全部单元模块,BUCK结构我们已经很理解了,这个芯片的主要功能是实现对MOS管的驱动,并通过FB脚检测输出状态来形成环路控制PWM驱动功率MOS管,实现稳压或者恒流输出。这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS管。
下面咱们一起来分析各个功能是怎么实现的
一、基准电压
类似于板级电路设计的基准电源,芯片内部基准电压为芯片其他电路提供稳定的参考电压。这个基准电压要求高精度、稳定性好、温漂小。芯片内部的参考电压又被称为带隙基准电压,因为这个电压值和硅的带隙电压相近,因此被称为带隙基准。这个值为1.2V左右,如下图的一种结构:
这里要回到课本讲公式,PN结的电流和电压公式:
可以看出是指数关系,Is是反向饱和漏电流(即PN结因为少子漂移造成的漏电流)。这个电流和PN结的面积成正比!即Is->S。
如此就可以推导出Vbe=VT*ln(Ic/Is) !
回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3和M4的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1) N是Q1 Q2的PN结面积之比!
回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3和M4的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1) N是Q1 Q2的PN结面积之比!
这样我们最后得到基准Vref=I2*R2+Vbe2,关键点:I1是正温度系数的,而Vbe是负温度系数的,再通过N值调节一下,可是实现很好的温度补偿!得到稳定的基准电压。
N一般业界按照8设计,要想实现零温度系数,根据公式推算出Vref=Vbe2+17.2*VT,所以大概在1.2V左右的,目前在低压领域可以实现小于1V的基准,而且除了温度系数还有电源纹波抑制PSRR等问题,限于水平没法深入了。最后的简图就是这样,运放的设计当然也非常讲究:
如图温度特性仿真:
二、振荡器OSC和PWM
我们知道开关电源的基本原理是利用PWM方波来驱动功率MOS管,那么自然需要产生振荡的模块,原理很简单,就是利用电容的充放电形成锯齿波和比较器来生成占空比可调的方波。
最后详细的电路设计图是这样的:
这里有个威廉希尔官方网站 难点是在电流模式下的斜坡补偿,针对的是占空比大于50%时为了稳定斜坡,额外增加了补偿斜坡,我也是粗浅了解,有兴趣同学可详细学习。
三、误差放大器
误差放大器的作用是为了保证输出恒流或者恒压,对反馈电压进行采样处理。从而来调节驱动MOS管的PWM,如简图:
四、驱动电路
最后的驱动部分结构很简单,就是很大面积的MOS管,电流能力强。
五、其他模块电路
这里的其他模块电路是为了保证芯片能够正常和可靠的工作,虽然不是原理的核心,却实实在在的在芯片的设计中占据重要位置。
具体说来有几种功能:
1、启动模块
启动模块的作用自然是来启动芯片工作的,因为上电瞬间有可能所有晶体管电流为0并维持不变,这样没法工作。启动电路的作用就是相当于“点个火”,然后再关闭。如图:上电瞬间,S3自然是打开的,然后S2打开可以打开M4 Q1等,就打开了M1 M2,右边恒流源电路正常工作,S1也打开了,就把S2给关闭了,完成启动。如果没有S1 S2 S3,瞬间所有晶体管电流为0。
2、过压保护模块OVP
很好理解,输入电压太高时,通过开关管来关断输出,避免损坏,通过比较器可以设置一个保护点。
3、过温保护模块OTP
温度保护是为了防止芯片异常高温损坏,原理比较简单,利用晶体管的温度特性然后通过比较器设置保护点来关断输出。
4、过流保护模块OCP
在譬如输出短路的情况下,通过检测输出电流来反馈控制输出管的状态,可以关断或者限流。如图的电流采样,利用晶体管的电流和面积成正比来采样,一般采样管Q2的面积会是输出管面积的千分之一,然后通过电压比较器来控制MOS管的驱动。
还有一些其他辅助模块设计。
六、恒流源和电流镜
在IC内部,如何来设置每一个晶体管的工作状态,就是通过偏置电流,恒流源电路可以说是所有电路的基石,带隙基准也是因此产生的,然后通过电流镜来为每一个功能模块提供电流,电流镜就是通过晶体管的面积来设置需要的电流大小,类似镜像。
七、小结
以上大概就是一颗DC/DC电源芯片LM2675的内部全部结构,也算是把以前的皮毛知识复习了一下。当然,这只是原理上的基本架构,具体设计时还要考虑非常多的参数特性,需要作大量的分析和仿真,而且必须要对半导体工艺参数有很深的理解,因为制造工艺决定了晶体管的很多参数和性能,一不小心出来的芯片就有缺陷甚至根本没法应用。整个芯片设计也是一个比较复杂的系统工程,要求很好的理论知识和实践经验。最后,学而时习之,不亦说乎!
今天的内容就到这了,如果您对文章内容方面还有疑问,可以扫描下方二维码,会有专门的老师帮你解决。
扫描失败可添加微信号:18138814636
﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌
免责声明:内容整理自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,谢谢!
————你可能错过的往期干货,更多干货请点击文末阅读原文————
向上划动即可查看更多哦
7、55页PPT!很火的MOS管电路工作原理及详解,没有之一!
1、大神教你DIY | 如何用一块FPGA开发板制作音乐盒?!
3、四旋翼 DIY高大上!用STM32单片机搞定四旋翼无人机飞控
5、史上最具创意鬼才10大DIY详细集锦,你赶紧看看吧!(收藏版)
电子发烧友学院精选
2、【学院推荐】LabVIEW与PLC如何进行Modbus通信?
4、【学院推荐】LabVIEW编程实例:手把手教你按键监视小软件的实现
5、【学院推荐】PCB工程师不得不看:超级实用AD常用快捷键总结
电子发烧友活动推荐
1、关于ESD原理及防护,这篇文章太专业了!点赞!(征文)
3、超强的四轴无人机飞控源代码,支持STM32所有系列(附项目资料)
4、11个电源设计小技巧,看完提高一半的工作效率!(附资料下载)
5、从菜鸟到高手,学习arm32位单片机的必经之路,给大家分享个人经验!
7、学好LLC开关电源设计,你必须要弄懂的原理知识(文末送资料大礼包)
电子发烧友电路精选
2、20个超经典模拟电路,工程师你知道几个?(收藏:附答案下载)
7、太牛了!电路图符号超强科普,不懂物理也能轻松看懂电路图!(推荐收藏)
电子发烧友资料精选
2、STM32大神笔记,超详细单片机学习汇总资料(干货分享)
3、工程师快速提升技能就看这份资料——固态继电器(SSR)使用指南
6、测量电子电路设计资料大全(电路图集+设计方案+制作流程)
电子发烧友热文推荐
7、55页PPT!很火的MOS管电路工作原理及详解,没有之一!
电子发烧友拆解及DIY推荐
1、大神教你DIY | 如何用一块FPGA开发板制作音乐盒?!
3、四旋翼 DIY高大上!用STM32单片机搞定四旋翼无人机飞控
5、史上最具创意鬼才10大DIY详细集锦,你赶紧看看吧!(收藏版)
电子发烧友学院精选
2、【学院推荐】LabVIEW与PLC如何进行Modbus通信?
4、【学院推荐】LabVIEW编程实例:手把手教你按键监视小软件的实现
5、【学院推荐】PCB工程师不得不看:超级实用AD常用快捷键总结
电子发烧友活动推荐
1、关于ESD原理及防护,这篇文章太专业了!点赞!(征文)
3、超强的四轴无人机飞控源代码,支持STM32所有系列(附项目资料)
4、11个电源设计小技巧,看完提高一半的工作效率!(附资料下载)
5、从菜鸟到高手,学习arm32位单片机的必经之路,给大家分享个人经验!
7、学好LLC开关电源设计,你必须要弄懂的原理知识(文末送资料大礼包)
电子发烧友电路精选
2、20个超经典模拟电路,工程师你知道几个?(收藏:附答案下载)
7、太牛了!电路图符号超强科普,不懂物理也能轻松看懂电路图!(推荐收藏)
电子发烧友资料精选
2、STM32大神笔记,超详细单片机学习汇总资料(干货分享)
3、工程师快速提升技能就看这份资料——固态继电器(SSR)使用指南
6、测量电子电路设计资料大全(电路图集+设计方案+制作流程)
最具有学习价值的电子发烧友社群邀请你加入
添加发烧友小助手
加入“发烧友微信群”交流,
THE END
1、加Lwangzi312为好友,进入电子行业交流大群
嵌入式软件|可编程逻辑|C语言|linux|单片机|LabVIEW|微机原理|RF/无线|PCB设计|IC设计|电源设计|模拟威廉希尔官方网站 |机器人|测试测量|Java|AR/VR|前端开发|大数据|python|STM32|FPGA|四轴算法|BLDC
2、加Lwangzi312为好友,进入电子行业城市交流群
深圳39591|北京26276|上海24794|广州15554|西安11854|成都10678|杭州10600|苏州10141|南京9735|武汉9204|东莞7960|天津6610|重庆6319|合肥5096|长沙4832|青岛4427|郑州4425|佛山4176|宁波3774|无锡3617|厦门3569|惠州2893
更多精彩内容,请戳阅读原文原文标题:开关电源IC内部电路解析!
文章出处:【微信号:elecfans,微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论