0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何让人工智能摆脱算法偏见

ThunderSoft中科创达 来源:未知 作者:胡薇 2018-11-15 14:57 次阅读

人们都曾看过电影里机器控制了世界而人类被毁灭的场景。好在这些电影只是娱乐性的,现实世界是不会发生的。然而一个更应该关注的问题是:算法偏见。

1

什么是“算法偏见”

所谓“算法偏见”是指在看似没有恶意的程序设计中带着设计者的偏见,或者所采用的数据是带有偏见的。结果当然是带来了各种问题,例如,被曲解的谷歌搜索,合格的考生无法进入医学院就学,聊天机器人在推特上散布种族主义和性别歧视信息等。

算法偏见造成的最棘手的问题是,从事编程工程师即使主观上没有种族主义、性别、年龄歧视等倾向,也有可能造成偏见。

人工智能AI,Artificial Intelligence)本质上就是为了自学而设计的,有时它的确会出错。当然,人们可以在事后做出调整,但最好的解决办法是一开始就防止它发生。

具有讽刺意味的是人工智能最令人兴奋的可能性之一就是能够搭建一个没有人类偏见的世界。比如当涉及到招聘时,一种算法可以让男性和女性在申请同一份工作时获得平等的待遇,或者在警务工作中避免种族偏见的发生。

不管人们是否意识到,人类创造的机器确实反映了人们怎样是看待世界的,因此也会有类似的刻板印象和世界观。由于人工智能越来越深入到生活中,人类必须重视它。

2

算法偏见的分类

人工智能面临的另外一个挑战是,偏见不是以一种形式出现的,而是有各种类型的。这包括交互偏见、潜意识偏见、选择偏见、数据驱动的偏见和确认偏见。

“交互偏见”是指用户由于自己与算法的交互方式而使算法产生的偏见。当机器被设置向周围环境学习时,它们不能决定要保留或者丢弃哪些数据,什么是对的,什么是错的。

相反,它们只能使用提供给它们的数据——不论是好的、坏的,还是丑的,并在此基础上做出决策。前面提到的聊天机器人Tay便是这类偏见的一个例子。它是受到一个网络聊天社区的影响而变得偏种族主义了。

“潜意识偏见”是指算法错误地把观念与种族和性别等因素联系起来。例如,当搜索一名医生的图像时,人工智能会把男性医生的图像呈现给一名女性,或者在搜索护士时反过来操作。

“选择偏见”是指用于训练算法的数据被倾向性地用于表示一个群体或者分组,从而使该算法对这些群体有利,而代价是牺牲其他群体。以招聘为例,如果人工智能被训练成只识别男性的简历,那么女性求职者在申请过程中就很难成功。

“数据驱动的偏见”是指用来训练算法的原始数据已经存在偏见了。机器就像孩子一样:他们不会质疑所给出的数据,而只是寻找其中的模式。如果数据在一开始就被曲解,那么其输出的结果也将反映出这一点。

最后一类是“确认偏见”,这类似于数据驱动的偏见,偏向于那些先入为主的信息。它影响人们怎样收集信息,以及人们怎样解读信息。例如,如果自己觉得8月份出生的人比其他时候出生的更富有创造性,那就会偏向于寻找强化这种想法的数据。

3

算法偏见并不可怕

当我们了解到这么多偏见的例子渗入到人工智能系统时,似乎会引起我们的担忧。但重要的是要认清事实,记住这个世界本身就是有偏见的,因此,在某些情况下,人们对从人工智能中得到的结果并不奇怪。

然而,并不应该如此,人们需要一个对人工智能算法和系统进行测试和验证的过程,以便在开发期间和部署之前及早发现偏见。

与人类不同,算法不能撒谎,因此,如果结果是有偏见的,那一定有原因:和它得到的数据有关。

人类可以撒谎去解释不雇佣某人的原因,但人工智能不能。而采用算法,就有可能知道什么时候会出现偏见,并对其进行调整,以便将来能克服这些问题。

人工智能会学习,也会犯错。通常情况下,只有在实际环境中使用算法后才能发现任何内在的偏见,因为这些偏见在实践中被放大了。

不应把算法看成是一种威胁,而是解决任何偏见问题的好机会,并能在必要的时候加以纠正。

可以通过开发系统来发现有偏见的决策,并及时采取措施。与人类相比,人工智能特别适合采用贝叶斯(Bayesian)方法来确定某种假设的概率,从而消除所有人类偏见的可能性。这比较复杂,但是可行的,特别是考虑到人工智能的重要性(在以后几年里只会越来越重要)。

随着人工智能系统的建立和部署,非常重要的一点是必须理解它们是怎样工作的,只有这样才能通过设计让它们具有意识,避免将来出现偏见问题。

不要忘记,尽管人工智能发展非常迅速,但仍处于起步阶段,还有很多值得学习和改进的地方。这种调整会持续一段时间,在此期间,人工智能会变得更聪明,将有越来越多的方法来克服偏见等问题。

威廉希尔官方网站 行业总是在质疑机器是怎样工作的,为什么这样工作。虽然大部分人工智能是在黑盒中运作的,决策过程是隐藏的,但人工智能的透明度是建立信任和避免误解的关键。

4

消除偏见的策略

目前有很多研究都在进行帮助鉴别偏见的产生,例如Fraunhofer Heinrich Hertz研究所开展的工作。他们正在研究识别不同类型的偏见,例如前面提到的偏见,还有一些更“低级”的偏见,以及人工智能训练和发展过程中可能出现的问题。

另外还需要考虑的是无监督训练。目前大多数人工智能模型是通过有监督训练生成的,采集的是明显带有人类选择的标签数据。

而对于无监督训练,使用不具任何标签的数据,算法必须要通过自己对数据进行分类、识别和汇集。

虽然这种方法通常比有监督学习慢很多数量级,但这种方法限制了人的参与。

因此,能够消除任何有意识或者无意识的人为偏见,从而避免对数据产生影响。

在底层也有很多事情可以改进。在开发新产品、网站或者功能时,威廉希尔官方网站 公司需要各方面的人员。

多样性会给算法提供各种各样的数据,而这些数据也是有偏见的。如果能有一些人去分析输出结果,那么发现偏见的可能性会更高。

此外,还可以发挥算法审计的作用。2016年,卡耐基梅隆研究小组在网络招聘广告中发现了算法偏见。

当他们列出了在网上寻找工作的人员后,谷歌广告显示,男性在高收入工作中所占比例是女性的近六倍。该小组的结论是,进行内部审计将有助于减少这类偏见。

总之,机器偏见来自人的偏见。人工智能的偏见有多种方式的表现,但实际上,它只有一个来源:人类自己。

处理这一问题的关键在于威廉希尔官方网站 公司、工程师和开发人员,他们都应该采取有效的措施来防止无意中创建一种带有偏见的算法。通过进行算法审计并始终保持透明度,就有信心让人工智能算法远离偏见。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28418

    浏览量

    207085
  • 人工智能
    +关注

    关注

    1791

    文章

    47274

    浏览量

    238474

原文标题:行业 | 让人工智能摆脱偏见

文章出处:【微信号:THundersoft,微信公众号:ThunderSoft中科创达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    应用场景。例如,在智能家居领域,嵌入式系统可以控制各种智能设备,如智能灯泡、智能空调等,而人工智能则可以实现对这些设备的
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    了电力的实时平衡和优化,有效降低了电网的运行成本和故障率。 此外,书中还讨论了人工智能在能源科学研究中的挑战和机遇。这些挑战包括数据质量、算法优化、隐私保护等方面,而机遇则体现在威廉希尔官方网站 创新、产业升级
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能威廉希尔官方网站 在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的威廉希尔官方网站 支撑学习心得

    非常高兴本周末收到一本新书,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 关于《AI for Science:人工智能驱动科学创新》第二章“AI
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,还促进了新理论、新威廉希尔官方网站 的诞生。 3. 挑战与机遇并存 尽管人工智能为科学创新带来了巨大潜力,但第一章也诚实地讨论了伴随而来的挑战。数据隐私、算法偏见、伦理道德等问题不容忽视。如何在利用AI提升科研效率
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章从科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI for Science的威廉希尔官方网站 支撑进行解读。 第3章介绍了在
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习威廉希尔官方网站 ,如生成对抗网络(GANs)、变分自编码器(VAEs)等。 生成式人工智能的研究目标是能
    的头像 发表于 02-19 16:43 1757次阅读