0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用SiC材料元器件的特性结构介绍

电子设计 作者:电子设计 2018-09-29 09:08 次阅读

1、SiC材料的物性和特征

SiC(碳化硅)是一种由Si(硅)和C(碳)构成的化合物半导体材料。SiC临界击穿场强是Si的10倍,带隙是Si的3倍,热导率是Si的3倍,所以被认为是一种超越Si极限的功率器件材料。SiC中存在各种多种晶型,它们的物性值也各不相同。其中,4H-SiC最合适用于功率器件制作。另外,SiC是唯一能够热氧化形成SiO2的化合物半导体,所以适合制备MOS型功率器件。

2、功率器件的特征

SiC的临界击穿场强是Si的10倍,因此与Si器件相比,能够以具有更高的杂质浓度和更薄的厚度的漂移层作出高耐压功率器件。高耐压功率器件的导通电阻主要来源于漂移层电阻,因此采用SiC可以得到单位面积导通电阻非常低的高耐压器件。理论上,相同耐压的器件,SiC的单位面积的漂移层电阻可以降低到Si的1/300。而Si材料中,为了改善伴随高耐压化而引起的导通电阻增大的问题,主要采用如IGBT(Insulated Gate Bipolar Transistor : 绝缘栅双极型晶体管)等少数载流子器件(双极型器件),但是却存在开关损耗大的问题,其结果是由此产生的发热会限制IGBT的高频驱动。SiC材料却能够以高频器件结构的多数载流子器件(肖特基势垒二极管MOSFET)去实现高耐压,从而同时实现"高耐压"、"低导通电阻"、"高频"这三个特性。另外,带隙较宽,是Si的3倍,因此SiC功率器件即使在高温下也可以稳定工作。

3、SiC MOSFET特征

a、器件结构和特征

Si材料中越是高耐压器件,单位面积的导通电阻也越大(以耐压值的约2~2.5次方的比例增加),因此600V以上的电压中主要采用IGBT(绝缘栅极双极型晶体管)。IGBT通过电导率调制,向漂移层内注入作为少数载流子的空穴,因此导通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。SiC器件漂移层电阻比Si器件低,不需要进行电导调制就能够以MOSFET实现高耐压和低导通电阻。而且MOSFET原理上不产生尾电流,所以用SiC-MOSFET替代IGBT时,能够明显地减少开关损耗,并且实现散热部件的小型化。另外,SiC-MOSFET能够在IGBT不能工作的高频条件下驱动,从而也可以实现无源器件的小型化。与600V~900V的Si-MOSFET相比,SiC-MOSFET的优势在于芯片面积小(可实现小型封装),而且体二极管的恢复损耗非常小。主要应用于工业机器电源、高效率功率调节器的逆变器转换器中。

b、标准化导通电阻

SiC的绝缘击穿场强是Si的10倍,所以能够以低阻抗、薄厚度的漂移层实现高耐压。因此,在相同的耐压值情况下,SiC可以得到单位面积导通电阻更低的器件。例如900V时,SiC-MOSFET的芯片尺寸只需要Si-MOSFET的35分之1、SJ-MOSFET的10分之1,就可以实现相同的导通电阻。不仅能够以小封装实现低导通电阻,而且能够使门极电荷量Qg、结电容也变小。SJ-MOSFET只有900V的产品,但是SiC却能够以很低的导通电阻轻松实现1700V以上的耐压。因此,没有必要再采用IGBT这种双极型器件结构(导通电阻变低,则开关速度变慢),就可以实现低导通电阻、高耐压、快速开关等各优点兼备的器件。

c、Vd-Id特性

SiC-MOSFET与IGBT不同,不存在开启电压,所以从小电流到大电流的宽电流范围内都能够实现低导通损耗。而Si-MOSFET在150℃时导通电阻上升为室温条件下的2倍以上,与Si-MOSFET不同,SiC-MOSFET的上升率比较低,因此易于热设计,且高温下的导通电阻也很低。

d、驱动门极电压和导通电阻

SiC-MOSFET的漂移层阻抗比Si-MOSFET低,但是另一方面,按照现在的威廉希尔官方网站 水平,SiC-MOSFET的MOS沟道部分的迁移率比较低,所以沟道部的阻抗比Si器件要高。因此,越高的门极电压,可以得到越低的导通电阻(Vgs=20V以上则逐渐饱和)。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    147

    文章

    7160

    浏览量

    213228
  • 半导体
    +关注

    关注

    334

    文章

    27335

    浏览量

    218367
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2811

    浏览量

    62626
收藏 人收藏

    评论

    相关推荐

    未来发展导向之Sic功率元器件

    是由硅(Si)和碳(C)组成的化合物半导体材料。其结合力非常强,在热、化学、机械方面都非常稳定。SiC存在各种多型(多晶型体),它们的物理特性值各有不同。4H-SiC最适用于功率
    发表于 07-22 14:12

    SiC功率元器件的开发背景和优点

    前面对SiC的物理特性SiC功率元器件的特征进行了介绍SiC功率
    发表于 11-29 14:35

    功率元器件

    -SBD和SiC-MOSFET,穿插与Si元器件的比较对其特性和使用方法的不同等进行解说,并介绍几个采用事例。全
    发表于 11-29 14:39

    SiC-MOSFET功率晶体管的结构与特征比较

    SiC-DMOS的特性现状是用椭圆围起来的范围。通过未来的发展,性能有望进一步提升。从下一篇开始,将单独介绍SiC-MOSFET的比较。关键要点:・功率晶体管的特征因
    发表于 11-30 11:35

    沟槽结构SiC-MOSFET与实际产品

    本章将介绍最新的第三代SiC-MOSFET,以及可供应的SiC-MOSFET的相关信息。独有的双沟槽结构SiC-MOSFET在
    发表于 12-05 10:04

    SiC SBD的器件结构和特征

    1. 器件结构和特征SiC能够以高频器件结构的SBD(肖特基势垒二极管)结构得到600V以上的高
    发表于 03-14 06:20

    SiC功率器件SiC-MOSFET的特点

    采用IGBT这种双极型器件结构(导通电阻变低,则开关速度变慢),就可以实现低导通电阻、高耐压、快速开关等各优点兼备的器件。3. VD - ID特性
    发表于 05-07 06:21

    SiC功率器件概述

    ,相同耐压的器件SiC的单位面积的漂移层阻抗可以降低到Si的1/300。而Si材料中,为了改善伴随高耐压化而引起的导通电阻增大的问题,主要采用如IGBT(Insulated Gate
    发表于 07-23 04:20

    SiC-MOSFET器件结构和特征

      1. 器件结构和特征  Si材料中越是高耐压器件,单位面积的导通电阻也越大(以耐压值的约2~2.5次方的比例增加),因此600V以上的电压中主要
    发表于 02-07 16:40

    SiC半导体材料及其器件应用

    分析了SiC半导体材料结构类型和基本特性介绍SiC 单晶
    发表于 11-01 17:23 81次下载
    <b class='flag-5'>SiC</b>半导体<b class='flag-5'>材料</b>及其<b class='flag-5'>器件</b>应用

    介绍 SiC 新功率元器件

    使用SiC的新功率元器件威廉希尔官方网站
    的头像 发表于 06-26 17:56 6149次阅读

    SiC功率元器件的开发背景和优点

    SiC功率元器件具有优于Si功率元器件的更高耐压、更低导通电阻、可更高速工作,且可在更高温条件下工作。接下来将针对SiC的开发背景和具体优点进行介绍
    发表于 02-09 11:50 600次阅读
    <b class='flag-5'>SiC</b>功率<b class='flag-5'>元器件</b>的开发背景和优点

    SiC功率元器件的开发背景和优点

    前面对SiC的物理特性SiC功率元器件的特征进行了介绍SiC功率
    发表于 02-22 09:15 567次阅读
    <b class='flag-5'>SiC</b>功率<b class='flag-5'>元器件</b>的开发背景和优点

    SiC功率元器件特征有哪些

    碳化硅(SiC)功率元器件是一种半导体器件,具有许多独特的特性,使其在高性能电力电子应用中具有优势。以下是SiC功率
    的头像 发表于 02-04 16:25 756次阅读

    深度了解SiC材料的物理特性

    与Si材料相比,SiC半导体材料在物理特性上优势明显,比如击穿电场强度高、耐高温、热传导性好等,使其适合于制造高耐压、低损耗功率器件。本篇章
    的头像 发表于 11-14 14:55 625次阅读
    深度了解<b class='flag-5'>SiC</b><b class='flag-5'>材料</b>的物理<b class='flag-5'>特性</b>