TensorFlow发布了一个新的优化工具包,引入post-training模型量化威廉希尔官方网站 ,将模型大小缩小了4倍,执行速度提升了3倍!
今天,TensorFlow发布了一个新的优化工具包:一套可以让开发者,无论是新手还是高级开发人员,都可以使用来优化机器学习模型以进行部署和执行的威廉希尔官方网站 。
这些威廉希尔官方网站 对于优化任何用于部署的TensorFlow模型都非常有用。特别是对于在内存紧张、功耗限制和存储有限的设备上提供模型的TensorFlow Lite开发人员来说,这些威廉希尔官方网站 尤其重要。
优化模型以减小尺寸,降低延迟和功耗,同时使精度损失可以忽略不计
这次添加支持的第一个威廉希尔官方网站 是向TensorFlow Lite转换工具添加post-training模型量化(post-training quantization)。对于相关的机器学习模型,这可以实现最多4倍的压缩和3倍的执行速度提升。
通过量化模型,开发人员还将获得降低功耗的额外好处。这对于将模型部署到手机之外的终端设备是非常有用的。
启用 post-training quantization
post-training quantization威廉希尔官方网站 已集成到TensorFlow Lite转换工具中。入门很简单:在构建了自己的TensorFlow模型之后,开发人员可以简单地在TensorFlow Lite转换工具中启用“post_training_quantize”标记。假设保存的模型存储在saved_model_dir中,可以生成量化的tflite flatbuffer:
1converter=tf.contrib.lite.TocoConverter.from_saved_model(saved_model_dir)2converter.post_training_quantize=True3tflite_quantized_model=converter.convert()4open(“quantized_model.tflite”,“wb”).write(tflite_quantized_model)
我们提供了教程详细介绍如何执行此操作。将来,我们的目标是将这项威廉希尔官方网站 整合到通用的TensorFlow工具中,以便可以在TensorFlow Lite当前不支持的平台上进行部署。
教程:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/tutorials/post_training_quant.ipynb
post-training 量化的好处
模型大小缩小4倍
模型主要由卷积层组成,执行速度提高10-50%
基于RNN的模型可以提高3倍的速度
由于减少了内存和计算需求,预计大多数模型的功耗也会降低
有关模型尺寸缩小和执行时间加速,请参见下图(使用单核心在Android Pixel 2手机上进行测量)。
图1:模型大小比较:优化的模型比原来缩小了4倍
图2:延迟比较:优化后的模型速度提高了1.2到1.4倍
这些加速和模型尺寸的减小对精度影响很小。一般来说,对于手头的任务来说已经很小的模型(例如,用于图像分类的mobilenet v1)可能会发生更多的精度损失。对于这些模型,我们提供预训练的完全量化模型(fully-quantized models)。
图3:精度比较:除 mobilenets外,优化后的模型的精度下降几乎可以忽略不计
我们希望在未来继续改进我们的结果,请参阅模型优化指南以获得最新的测量结果。
模型优化指南:
https://www.tensorflow.org/performance/model_optimization
post-training quantization的工作原理
在底层,我们通过将参数(即神经网络权重)的精度从训练时的32位浮点表示降低到更小、更高效的8位整数表示来运行优化(也称为量化)。 有关详细信息,请参阅post-training量化指南。
post-training量化指南:
https://www.tensorflow.org/performance/post_training_quantization
这些优化将确保将最终模型中精度降低的操作定义与使用fixed-point和floating-point数学混合的内核实现配对。这将以较低的精度快速执行最繁重的计算,但是以较高的精度执行最敏感的计算,因此通常会导致任务的最终精度损失很小,甚至没有损失,但相比纯浮点执行而言速度明显提高。
对于没有匹配的“混合”内核的操作,或者工具包认为必要的操作,它会将参数重新转换为更高的浮点精度以便执行。有关支持的混合操作的列表,请参阅post-training quantizaton页面。
未来的工作
我们将继续改进post-training量化威廉希尔官方网站 以及其他威廉希尔官方网站 ,以便更容易地优化模型。这些将集成到相关的TensorFlow工作流中,使它们易于使用。
post-training量化威廉希尔官方网站 是我们正在开发的优化工具包的第一个产品。我们期待得到开发者的反馈。
-
机器学习
+关注
关注
66文章
8408浏览量
132580 -
tensorflow
+关注
关注
13文章
329浏览量
60530
原文标题:TensorFlow 首个优化工具来了:模型压缩4倍,速度提升3倍!
文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论