0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

电子设计 来源:郭婷 作者:电子设计 2018-12-04 08:48 次阅读

1.引言

通常微波所指的是分米波、厘米波和毫米波。关于其频率范围,一种说法是:

300MHz ~ 300GHz(1MHz =106Hz,1GHz =109 )相应的自由空间中的波长约为1m~1mm.

微波威廉希尔官方网站 的兴起和蓬勃发展,使得国内大多数高校都开设微波威廉希尔官方网站 课程。但还存在以下问题:测量时,由手工逐点移动探头并记录各点读数,然后手工计算实验结果并绘图。测量项目单一、精度低、测量周期长,操作也较为繁琐。本文主要研究一种实用的基于Labview的速调管微波频率自动测量系统。

2.系统整体结构

系统的整体结构如图2-1所示。由下位机跟上位机构成。微处理器通过驱动电路来控制步进电机,带动谐振式频率计的套筒转动,处理器采样检波电流,传送到上位机LabVIEW界面显示,并利用PC机强大的数据处理功能,分析出电流最小值,计算出所测频率。

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

3.系统硬件设计

3.1 微处理器系统电路的设计

本系统选用的微处理器是S3C44B0.2.5VARM7TDMI内核,3.0~3.6V的I/O操作电压范围。可通过PLL锁相环倍频高至66MHz;71个通用I/O口;内嵌有8通道10位ADC,本系统选取了通道1作为晶体检波器电流输入通道。

3.2 复位电路

系统没有采用RC电路作为复位电路,而使用了电压监控芯片SP708SE,提高了系统的可靠性。复位电路的RST 端连接到S3C44B0的复位引脚nRESET,因为S3C44B0的复位信号是低电平有效,所以当系统掉电或复位按键SW_RST被按下时,电源监控芯片RST 引脚立即输出复位信号,使S3C44B0芯片复位。

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

3.3 谐振式频率计自动测量电路的设计

3.3.1 定标法测频率原理

为了实现频率的自动化测量,本系统采用步进电机带动频率计的转动,当腔体转到了谐振位置时候,到达检波器的微波功率明显下降,检波电流出现明显的下降,而这个位置对应的频率就是所测频率。步进电机带动下的是非只读式频率计,所以先要用定标的方法,拟合出频率与刻度的对应关系式。定标法:同时配合两种频率计,一种是只读式的,可直接读出频率;另一种是非只读式的,只有刻度,不能直接读出频率。首先手动转动非只读式频率计到一个谐振的位置,记录这时的刻度,然后再转动只读式频率计,到另外一个谐振位置,记录对应的频率。重复这种操作,测出尽量多的频率和刻度对应点,根据测得数据再用最小二乘法拟合出两者的对应关系式。最后改换用步进电机带动非只读式频率计转动,当转动到检波电流出现明显的“吸收谷”时,读得这时的刻度,根据拟合出来的刻度与频率关系式,就可得所测频率。

3.3.2 步进电机及自动控制电路

步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可通过控制脉冲频率来控制电机转动的速度,达到调速的目的。

本系统采用二相步进电机,具有如下一些特点:只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可实现电机的转动方向;步进角为1.8°的两相四线混合式步进电机,并把细分驱动器的细分数设置为8,电机的运转分辨率为每个脉冲0.225°。为了有效驱动电机,本文采用了基于TA8435H芯片的驱动电路。实际应用电路如下图3-2所示,芯片的输入信号有使能控制、正反转控制和时钟输入。

通过光耦器件TLP521可将驱动芯片跟输入级进行电隔离,起到逻辑电平隔离和保护作用。

M1,M2分别接高电平,所以为1/8细分方式。

由于REF IN引脚接高电平,因此VNF为0.8V.

输出级斩波电流为VNF/RNF=0.8/0.8=1A,因此R212、R213要选用功率大一些的电阻。选用不同的二相步进电机时,应根据其电流大小选择合适的R212和R213.R21和C5组成复位电路,D1~D4快恢复二极管可用来泄放绕组电流。

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

电路中用到微处理器S3C44B0引脚PC0,PC1,PC2给驱动电路分别输出使能,正反转,时钟信号,通过控制输出脉冲的间隔可以控制电机转动的速率,而输出脉冲个数可控制步进电机走动的步数,达到控制频率计腔体位置目的。电路输出端口A, A, B, B接二相步进电机对应输入端子

3.3.3 检波电流I/V转换及放大电路

检波晶体的作用是将微波微弱信号转换成直流信号。故可观察检波电流是否出现“吸收波谷”来判断腔体是否到达谐振位置。本系统将检波电流经过处理之后传送到上位机的LabVIEW界面显示,观察是否到谐振位置。

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

由于微波信号在传输过程中受到外部干扰的噪声,线路的噪声,元器件的噪声等等,因此需要滤波电路来滤除这些干扰信号。由于处理器对信号的采集速率比较低,所以本系统采用了时间常数比较大的由R418和C409构成的低通滤波器。其截止频率为f p =30Hz有利于滤除电路中的尖峰噪声。电路采用两级运放,第一级为I/V转换,第二级为电压反相放大。调节可变衰减器,电机走完全程,观察到检波电流最大值为50.9μ A,因此电路中RF4=1K,R416=1K,RF5=45K,由Vout1=-RF4*I知,经过第一级I/V转换之后最大电压为50.9mV,再经过放大,最终输出电压最大为2.291V,满足S3C44B0的A/D转换输入要求。

4.软件设计

4.1 下位机软件

系统开机复位后,进入while(1)死循环,时刻检测上位机是否发来测量频率的命令,当接受到测量频率命令后,调用测频率模块子程序。频率测量子程序中,电机走完全程需要1854步,每一步带动谐振腔走0.005mm,每一步耗时44.44ms,电机每走动一步,把100次检波电流的A/D转换数据求平均值后再通过串口发送到上位机显示。

4.2 上位机软件设计

在虚拟仪器开发平台LabVIEW中,可以利用基于VISA的仪器驱动模板中的I/O接口函数来方便快速地开发驱动程序。本系统中通过PC机和主控芯片S3C44BO的RS232串行通信实现数据采集的驱动程序正是使用这种方法。

如图3-5频率测量的labview程序图。首先用最大值与最小值函数求出采集到的电流数据的最小值,并求出其对应的索引值,即步进电机在哪一步采集到的电流值,从而把这个索引值反馈回频率数组,求出其对应的元素,则为所测频率。

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

5.信号源输出频率测量实验结果及分析

为了在上位机的LabVIEW界面得到所测量的微波信号频率,需在界面中显示出检波电流--频率曲线,从而可明显读出检波电流的“吸收波谷点”.需通过定标法先手工测量频率--距离(当前测量点与起始点的距离,可由套筒刻度算出)的一组尽可能多的数据点,然后利用步进电机每走一步的距离,就可以把距离转化为步数,再用matlab拟合出频率--步数的关系函数。从而可知道步进电机走到哪一步对应哪一个频率。电机走完全程需要1854步,那么把步数对应的1854个频率值组成一个数组作为曲线的横坐标,并把采集到的1854个电流值作为纵坐标。

限于本信号源频率及谐振式频率计测量范围的影响,本系统只能在8.48GHz和9.9GHz范围内测量。因此从套筒的起始位置9.9mm(对应于频率8 . 4 8 G H z ),截止位置0 . 6 3 m m (对应于频率9.9GHz),其全长为9.9mm-0.63mm=9.27mm.由于电机带动套筒每步的距离非常小,因此不能直接测量步进电机一步的距离,利用步进电机没有累计误差的特点,采用步进电机走动180步,测出套筒刻度前后位置差,得出步进电机带动套筒每一步移动平均距离为0.005mm.手工测出频率与刻度的42组数据点,利用MATLAB拟合出图5-1所示曲线。用MATLAB拟合出频率f 与刻度L 线性关系函数为f = ?0.1456* L + 9.9917(0.63mm ≤ L ≤ 9.9mm)。由于电机每步带动套筒移动0.005mm,起始位置在0.63mm,即步进电机走一步后,套筒的位置在0.63mm+0.005mm=0.635mm,而步进电机走完全程需要1854步,套筒的截止位置在0.63+0.005*1854=9.9mm.则刻度L 与步数n 的关系函数为L = 0.005n + 0.63(0 ≤ n ≤1854)。

可推导出频率f 与步数n的函数关系式为f = ?0.000728n + 9.9(0 ≤ n ≤1854)。把步数对应的1854个频率值组成一个数组作为曲线的横坐标,并把采集到的1854个电流值作为纵坐标,利用PC机在LabVIEW描绘的波形图如图5-2所示。

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

再由LabVIEW自动计算检波电流最小值对应的频率值,如图5-4所示。可知这时信号源输出频率为9.337GHz.

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

与手工测量做对比。换上可直接测出频率的谐振式频率计,测得这时的频率为9.357GHz,所以自动测量与手动测量的相对误差为:

采用S3C44B0芯片实现基于步进电机控制的微波频率自动测量系统设计

本系统设定步进电机走完全程需要82.4秒,不能设得走太快的原因是防止步进电机“丢步”(漏掉了脉冲没有运动到指定的位置)。另外太快很可能检测不到检波电流的“波谷点”.而手工测量一次信号源的输出频率,通常要两分多钟,可见本系统自动测量的实用性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    456

    文章

    50919

    浏览量

    424582
  • 测量系统
    +关注

    关注

    2

    文章

    539

    浏览量

    41424
  • 步进电机
    +关注

    关注

    150

    文章

    3113

    浏览量

    147578
收藏 人收藏

    评论

    相关推荐

    S3c44b0 控制步进电机

    使用S3c44b0控制步进电机,需要有正转,反转,加速减速,匀速功能,哪位大虾帮帮我,给我个例程,十分感谢了
    发表于 03-29 23:58

    跪求S3c44b0 u***驱动

    `各位大虾,我买了一块S3c44b0的板子,准备用DNW烧写程序时,但是DNW显示USB:x,在网上找了很久都没有找到,我用的是win7,所以跪求这个驱动,如果有的话,请发到邮箱1159438455@qq.com,万分感谢!`
    发表于 07-06 22:16

    求基于S3C44B0的语音录放系统设计代码的mcp工程包

    求大神相助!基于S3C44B0的语音录放系统设计,最好有mcp工程包哈
    发表于 05-10 21:20

    uCOS在S3C44B0上的移植代码 1.0(源程

    uCOS在S3C44B0上的移植代码 1.0(源程序)
    发表于 03-28 09:47 39次下载

    基于S3C44B0的U-Boot启动分析和移植实现

    U-Boot 是sourceforge网站上的一个开源项目,是当今比较流行、功能强大的BootLoader,能支持多种体系结构。本文在阐述U-Boot启动过程之后,对其在S3C44B0上移植过程中的要点加以分析
    发表于 08-27 09:08 37次下载

    S3C44B0中文手册,S3C44B0中文资料

    S3C44B0中文手册:S3C44B0X 的UART(通用异步收发器)单元提供两个独立的异步串行I/O 端口,每个都可以在中断和DMA 两种模式下工作。它们支持的最高波特率为115.2Kbps。每个UART通道包含2
    发表于 09-10 18:53 572次下载

    为何选用SAMSUNG S3C44B0进行开发

    为何选用SAMSUNG S3C44B0进行开发   目前,ARM7芯片在国内开发的潮流是三星公司的S3C44B0S3C4510。这两款
    发表于 02-09 17:57 45次下载

    S3C44B0中文数据手册

    S3C44B0中文数据手册 很多数字音频系统进入了音频消费市场,包括音频压缩唱片,数字音频磁带,数字声音处理器,和数字声音TV。
    发表于 02-10 12:01 128次下载

    基于S3C44B0的串口服务器系统的设计

    为使现有的基于RS232 、RS485 或CAN 总线的串口设备以以太网的方式组网运行,文章介绍了一种基于S3C44B0 的 串口服务器 系统的设计,详细阐述了系统硬件、软件结构及其工作原理。实际
    发表于 09-01 15:16 1755次阅读
    基于<b class='flag-5'>S3C44B0</b>的串口服务器<b class='flag-5'>系统</b>的设计

    S3C44B0的初始化程序的理解

    S3C44B0的初始化程序就是初始化各个关键的寄存器,建立中断向量,然后转移到主函数去执行程序。不过S3C44B0不支持地址映射,所以程序不COPY到RAM种执行。S3C44B0初始化对我们广大初学者
    发表于 09-28 11:32 1704次阅读

    基于S3C44B0开发板的图像采集方法研究

    本文简要介绍嵌入式系统,并详细阐述了基于三星公司ARM7嵌入式处理芯片S3C44B0为核心构成的开发板,通过uCLinux开发环境,运用Omni Vision511芯片摄像头采集图片的
    发表于 05-29 10:32 2070次阅读
    基于<b class='flag-5'>S3C44B0</b>开发板的图像采集方法研究

    基于ARM的步进电机控制微波频率自动测量系统的设计

    系统采用三星公司的 ARM 处理芯片 S3C44B0 为核心,设计了步进电机
    发表于 11-02 11:12 3次下载
    基于ARM的<b class='flag-5'>步进</b><b class='flag-5'>电机</b><b class='flag-5'>控制</b>的<b class='flag-5'>微波</b><b class='flag-5'>频率</b><b class='flag-5'>自动</b><b class='flag-5'>测量</b><b class='flag-5'>系统</b>的设计

    串口服务器系统S3C44B0的应用设计

    RTL8019AS ,其接口电路如图3 所示。 图3  以太网控制器接口电路图 图3 中,RTL8019AS 采用IN
    的头像 发表于 11-12 11:19 3173次阅读

    基于S3C44B0开发板进行Blob的移植操作和步骤

    Bootloader是嵌入式系统软件开发的第一个环节,它紧密地将软硬件衔接在一起,对于一个嵌入式设备后续的软件开发至关重要。Blob是一款功能强大的Bootloader,S3C44B0是三星公司一款基于ARM7TDMI的嵌入式通用处理器。本文详细介绍Blob在基于
    的头像 发表于 10-04 17:08 1920次阅读
    基于<b class='flag-5'>S3C44B0</b>开发板进行Blob的移植操作和步骤

    基于S3C44B0的LCD控制及触摸屏接口设计

    电子发烧友网站提供《基于S3C44B0的LCD控制及触摸屏接口设计.pdf》资料免费下载
    发表于 10-11 09:45 0次下载
    基于<b class='flag-5'>S3C44B0</b>的LCD<b class='flag-5'>控制</b>及触摸屏接口设计