C语言LSTM隐层神经元结构:
LSTM隐层神经元详细结构:
//让程序自己学会是否需要进位,从而学会加法#include "iostream"#include "math.h"#include "stdlib.h"#include "time.h"#include "vector"#include "assert.h"using namespace std;#define innode 2 //输入结点数,将输入2个加数#define hidenode 26 //隐藏结点数,存储“携带位”#define outnode 1 //输出结点数,将输出一个预测数字#define alpha 0.1 //学习速率#define binary_dim 8 //二进制数的最大长度#define randval(high) ( (double)rand() / RAND_MAX * high )#define uniform_plus_minus_one ( (double)( 2.0 * rand() ) / ((double)RAND_MAX + 1.0) - 1.0 ) //均匀随机分布int largest_number = ( pow(2, binary_dim) ); //跟二进制最大长度对应的可以表示的最大十进制数//激活函数double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); }//激活函数的导数,y为激活函数值double dsigmoid(double y) { return y * (1.0 - y); } //tanh的导数,y为tanh值double dtanh(double y) { y = tanh(y); return 1.0 - y * y; }//将一个10进制整数转换为2进制数void int2binary(int n, int *arr) { int i = 0; while(n) { arr[i++] = n % 2; n /= 2; } while(i < binary_dim) arr[i++] = 0; }class RNN {public: RNN(); virtual ~RNN(); void train();public: double W_I[innode][hidenode]; //连接输入与隐含层单元中输入门的权值矩阵 double U_I[hidenode][hidenode]; //连接上一隐层输出与本隐含层单元中输入门的权值矩阵 double W_F[innode][hidenode]; //连接输入与隐含层单元中遗忘门的权值矩阵 double U_F[hidenode][hidenode]; //连接上一隐含层与本隐含层单元中遗忘门的权值矩阵 double W_O[innode][hidenode]; //连接输入与隐含层单元中遗忘门的权值矩阵 double U_O[hidenode][hidenode]; //连接上一隐含层与现在时刻的隐含层的权值矩阵 double W_G[innode][hidenode]; //用于产生新记忆的权值矩阵 double U_G[hidenode][hidenode]; //用于产生新记忆的权值矩阵 double W_out[hidenode][outnode]; //连接隐层与输出层的权值矩阵 double *x; //layer 0 输出值,由输入向量直接设定 //double *layer_1; //layer 1 输出值 double *y; //layer 2 输出值};void winit(double w[], int n) //权值初始化{ for(int i=0; i
-
C语言
+关注
关注
180文章
7604浏览量
136711 -
程序
+关注
关注
117文章
3785浏览量
81009 -
神经元
+关注
关注
1文章
363浏览量
18449
原文标题:LSTM神经网络的详细推导与c++实现
文章出处:【微信号:C_Expert,微信公众号:C语言专家集中营】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论