0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

清华深研院刘思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物复合固态电解质

清新电源 来源:清新电源 2025-01-07 09:15 次阅读

近日,深圳清华大学研究院(清华深研院)刘思捷/香港科技大学Kristiaan Neyts教授团队在《Advanced Energy Materials》国际期刊上综述研究了硫化物/聚合物复合固态电解质及其全固态锂离子电池的应用,并被评选为正封面(front cover)文章。

本文综述了硫化物与聚合物复合固态电解质(SSEs)在高能量密度全固态锂离子电池(SSLBs)中的应用研究。随着全球对能源的需求日益增加,以及环境保护要求的提升,市场对高效可充电电池储能系统的需求变得愈发紧迫,尤其是在太阳能和风能等可再生能源存储领域。锂离子电池(LIBs)因其出色的工作电压、高能量密度、便携性、良好的低温性能及长寿命,成为理想的解决方案之一。然而,液态电解质所带来的电解液泄漏、起火和爆炸等安全隐患,严重制约了锂离子电池的长期应用。因此,研究者们逐渐转向用无机固态电解质(SSE)来替代传统的有机液态电解质,以组装更安全、可回收性更强、应用范围更广的固态锂离子电池(SSLBs)。

硫化物-聚合物复合固态电解质的制备方法涉及将硫化物与有机成分混合,然后通过干燥形成复合电解质膜或片,如表1所示。这一过程不仅可以提高电解质的离子导电性,还能增强其机械强度和稳定性,从而提升全固态锂离子电池的整体性能。此外,研究还表明,通过调整硫化物与聚合物的比例和配方,可以进一步优化电解质的性能,以适应不同的应用需求。这些研究方向为开发更高效、更安全的全固态锂离子电池提供了新的思路和可能性。

Table 1 Summary of the Basic Properties of “organics-in-sulfide” compositeSSE

dc3e80b0-cbd3-11ef-9310-92fbcf53809c.png

dc5fbc58-cbd3-11ef-9310-92fbcf53809c.png

dc85360e-cbd3-11ef-9310-92fbcf53809c.png

dc9c71ca-cbd3-11ef-9310-92fbcf53809c.png

当有机物和硫化物的含量相等时,会形成一种中间复合固态电解质(SSE),如图2b所示。正如之前所提到的,当有机物的含量非常低时,它们会与硫化物结合形成有机物硫化物复合固态电解质。在这种情况下,添加锂盐后,有机物能够充当锂离子传输的通道,从而提升电解质的机械性能。而在缺乏锂的情况下,有机物则可以作为粘合剂,填充硫化物颗粒间的空隙,使得电解质结构更加紧密。

然而,由于有机物自身具有绝缘特性,复合固态电解质的导电性通常会随着有机物含量的增加而下降。这是因为有机物可能会遮蔽硫化物颗粒之间本应存在的锂离子传导路径。不过,某些特殊结构的有机化合物(例如网络结构或导线状结构)可以被引入,以适量的方式作为复合固态电解质的支撑框架。这种设计能够有效地提供良好的弹性以及锂离子的渗透性,形成一种兼具性能与结构优势的杂化膜。

表2中详细总结了“即时”复合固态电解质的基本特性,包括其组成、性能参数以及应用潜力。这些信息为进一步研究和开发新型电解质材料提供了重要的参考依据。通过优化有机物和硫化物的比例、结构和相互作用,可以实现更高效的锂离子导电性和机械强度,从而推动固态电池威廉希尔官方网站 的发展。

Table 2 Summary of the Basic Properties of “immediate” composite SSE

dca7ffa4-cbd3-11ef-9310-92fbcf53809c.png

无机-有机复合固态电解质(SSEs)的一大局限性在于,为了实现较高的离子电导率,通常需要使用大量的无机填料(超过30%),这不仅增加了膜的制备难度,还可能导致其机械性能的下降。为了解决这个问题,可以考虑使用具有超高离子电导率的硫化物电解质作为无机填料,这类电解质被称为有机硫化物固态电解质(SSEs)。近年来,基于硫化物的有机化合物SSEs的研究逐渐引起了关注,但相关文献仍然较为稀少,且大部分工作主要集中在硫化物本身的研究上。

如表3所示,这些新兴的有机硫化物SSEs显示出良好的潜力,尤其是在提高整体电导率和优化机械特性方面。通过合理设计与调控有机物与无机硫化物的组合,可以实现更优异的电解质性能。这种研究方向不仅有助于深化对固态电解质的理解,还可能推动下一代电池威廉希尔官方网站 的进步,尤其是在提升能量密度和安全性方面。未来的研究可以进一步探索更广泛的有机和无机材料组合,以获得理想的复合固态电解质结构,满足高性能电池的需求。

Table 3 Summary of the Basic Properties of “sulfide-in-organic” Composite SSEs

dcc53ede-cbd3-11ef-9310-92fbcf53809c.png

到目前为止,许多研究已经聚焦于聚合物与硫化物之间的复合固态电解质(SSEs),这种结构通常被称为三明治式层状复合SSEs,如表4所示。这种设计理念通过将聚合物和硫化物交替层叠,以期实现优越的离子导电性和机械强度。

在这些研究中,科学家们探索了不同聚合物和硫化物的组合,以优化复合材料的电化学性能。聚合物层不仅能提供良好的机械支持,还能改善界面相容性,同时硫化物层则主要负责提高离子导电性。三明治结构的特点在于其可以实现更高的离子传输效率,同时保持良好的力学性能,这对于固态电池的实际应用至关重要。

此外,随着对这些复合固态电解质的深入研究,研究者们还发现,调节各层的厚度及其材料成分,可以显著影响电解质的整体性能。因此,这一领域的研究不仅为新型固态电池的开发提供了重要的理论基础,也为工程实际应用中优化电解质性能提供了新的思路和方法。未来的研究可能会进一步探索不同材料的相互作用机制及其在不同工作条件下的表现,从而推动固态电池威廉希尔官方网站 的进步与应用。

Table 4 Summary of the Basic Properties of “layer-by-layer” Composite SSEs

dce17f0e-cbd3-11ef-9310-92fbcf53809c.png

硫化物-有机复合固态电解质(SSE)的合成过程通常需要在惰性气氛中进行。这是因为硫化物电解质和聚合物电解质的合成步骤是独立进行的,随后再进行混合,以便在开展各种实验之前形成复合材料。因此,在此讨论中,不涉及单一的硫化物电解质或单一的聚合物电解质的具体实验方法。

表5对硫化物-有机复合SSE的制备方法进行了详细的总结。这些方法涵盖了不同的合成威廉希尔官方网站 ,包括溶液法、熔融法以及其他常见的复合工艺,每种方法都有其独特的优缺点和适应范围。通过合理选择合成策略,研究人员能够优化复合电解质的微观结构,从而提高其电导率和机械性能。

在合成过程中,控制各组分的比例、混合方式以及后续的热处理条件至关重要。这些因素不仅影响复合材料的结构特性,还会对其电化学性能产生重要影响。随着对硫化物-有机复合SSE的研究深入,开发更高效的合成方法将进一步推动其在固态电池领域的应用潜力。未来的研究方向可能包括探索新型材料组合、优化合成条件以及评估其在实际电池中的性能表现,以实现更高的能量密度和更长的循环寿命。

Table 5 Summary of the preparation methods of sulfide-organics composite SSEs

dd0987ba-cbd3-11ef-9310-92fbcf53809c.png

dd216ede-cbd3-11ef-9310-92fbcf53809c.png

dd4aa858-cbd3-11ef-9310-92fbcf53809c.png

dd6c4ce2-cbd3-11ef-9310-92fbcf53809c.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

原文标题:清华深研院刘思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物复合固态电解质

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Li3MX6全固态锂离子电池固体电解质材料

        研究背景 Li3MX6族卤化(M = Y、In、Sc等,X =卤素)是新兴的全固态锂离子电池固体电解质材料。与现有的硫化物固体电解质
    的头像 发表于 01-02 11:52 89次阅读
    Li3MX6全<b class='flag-5'>固态</b>锂离子电池固体<b class='flag-5'>电解质</b>材料

    一种薄型层状固态电解质的设计策略

    究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度锂金属电池安全性问题的有效途径。为了开发性能优异的全固态锂金属电
    的头像 发表于 12-31 11:21 118次阅读
    一种薄型层状<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的设计策略

    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体电解质

    对其广泛应用造成严重限制。在这种情况下,采用固体电解质的全固态锂电池为提高安全性提供了巨大的潜力。在不同的粒子中,硫化物的离子导电性是非常好的。此外,硫化物SES还具有机械健壮性等优点
    的头像 发表于 12-04 10:05 209次阅读
    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体<b class='flag-5'>电解质</b>

    华为公布硫化物固态电池新专利,固态电池威廉希尔官方网站 加速发展

    华为于11月5日宣布了一项关于硫化物固态电池的创新专利,专利名称为《掺杂硫化物材料及其制备方法、锂离子电池》。据专利摘要介绍,该掺杂硫化物材料可以作为
    的头像 发表于 11-07 16:02 558次阅读

    固态电池中复合锂阳极上固体电解质界面的调控

    采用固体聚合电解质(SPE)的固态锂金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 471次阅读
    <b class='flag-5'>固态</b>电池中<b class='flag-5'>复合</b>锂阳极上固体<b class='flag-5'>电解质</b>界面的调控

    固态电池的能量密度是多少

    为研究的热点。 固态电池的基本原理 固态电池的核心在于其使用的固态电解质,这种电解质取代了传统锂离子电池中的液态
    的头像 发表于 10-28 09:26 806次阅读

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 410次阅读

    氧化布局格局一览 氧化电解质何以撑起全固态

    今年以来,各式各样的半固态、全固态电池开始愈发频繁且高调地现身,而背后均有氧化电解质的身影。
    的头像 发表于 05-16 17:41 1106次阅读

    铌酸锂调控固态电解质电场结构促进锂离子高效传输!

    聚合固态电解质得益于其易加工性,最有希望应用于下一代固态锂金属电池。
    的头像 发表于 05-09 10:37 825次阅读
    铌酸锂调控<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    固态电池结构示意图

    相较于传统锂离子电池,固态锂离子电池安全性能高,无自然,爆炸的风险。氧化硫化物电解质固态电池能量密度高于采用相同正负极材料的传统锂电
    的头像 发表于 04-01 16:56 2999次阅读
    <b class='flag-5'>固态</b>电池结构示意图

    请问聚合电解质是如何进行离子传导的呢?

    在目前的聚合电解质体系中,高分子聚合在室温下都有明显的结晶性,这也是室温下固态聚合电解质
    的头像 发表于 03-15 14:11 1271次阅读
    请问聚合<b class='flag-5'>物</b><b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池的电解质都是什么?

    聚合,如固态电池,固态陶瓷和熔融盐(如钠硫电池)中使用的聚合。 铅酸电池 铅酸电池使用硫酸作为电解质。充电时,随着正极板上形成氧化铅(P
    的头像 发表于 02-27 17:42 1620次阅读

    固态电解质离子传输机理解析

    固态电解质中离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中传输。
    发表于 01-19 15:12 2867次阅读
    <b class='flag-5'>固态</b><b class='flag-5'>电解质</b>离子传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    关于<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的基础知识

    铜集流体是否适用于硫化物固态电池?

    硫化物固态电池因其高能量密度、高安全性、长循环寿命引起了研究界的广泛关注。
    的头像 发表于 01-10 09:16 1175次阅读
    铜集流体是否适用于<b class='flag-5'>硫化物</b>全<b class='flag-5'>固态</b>电池?