0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光学超构表面+MEMS:可切换涡旋激光器

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-12-26 09:41 次阅读

wKgZPGdshXuAURUdAAC6ZdTTMlM246.jpg

图:涡旋光的(a)光场强度和(b)传输轨迹

近日,Science子刊《Science Advances》发表题目为“MEMS-metasurface−enabled mode-switchable vortex lasers”(基于MEMS超构表面的模式可切换涡旋 激光器)的学术论文。论文由北京邮电大学信息光子学与光通信全国重点实验室联合南丹麦大学纳米光学中心、挪威科技工业研究所共同完成。第一作者为北京邮电大学博士生王传硕,北京邮电大学电子工程学院徐坤教授、桂丽丽教授与南丹麦大学纳米光学中心Sergey I. Bozhevolnyi院士(丹麦自然科学院和丹麦工业威廉希尔官方网站 科学院两院院士)、孟超博士为本文通讯作者。

此项研究,主要聚焦涡旋光束领域,目的是通过将光学超构表面(OMS)与压电微机电系统(piezoelectric MEMS)威廉希尔官方网站 相结合,研发一种模式可重构的动态涡旋光纤激光器。

提到“涡旋光”,你可能感到很陌生,那么你一定注意到了,生活中有很多现象都与“旋转”息息相关。比如水流入下水池时形成的旋转漩涡,或者热带气旋、龙卷风,它们的力量都源于旋转。在光学领域,有一种拥有旋转特性的光——涡旋光。与普通的光不同,涡旋光具有独特的螺旋相位轮廓。在先进光学成像、光学操纵、激光加工等领域展现出了巨大的应用潜力。传统上,涡旋光束的生成通常依赖于复杂且笨重的光学元件,难以满足现代光学系统对轻量化和紧凑性的需求。因此,开发小型化、高效且易于集成的光学元件,成为了当前涡旋光束研究领域的一大热点。

光学超构表面(OMS)则为实现这些目标提供了全新思路。它犹如一块“光的魔法拼图”,由纳米级的“拼图块”组成,每一小块都能精确地操控光的幅度、相位和偏振,从而实现光的转弯、聚焦、变色等奇妙效果。相比传统光学元件,它不仅超薄轻便,而且功能强大,仿佛是光学世界的“魔术师”,将人类对光的控制推向了微观尺度的新时代。

在探索如何基于OMS从源头构建用户友好的结构光源问题上,北邮科研团队依托长期以来在微纳光场调控和光纤激光器领域的深厚科研积累,研发成功了将OMS与压电微机电系统(piezoelectric MEMS)集成的平台,通过电压驱动MEMS微镜来动态、高效地调制MEMS-OMS的光学响应,并将其集成到光纤激光腔内,最终实验实现了一种模式可切换的新型涡旋激光源。与传统的单一模式输出的静态激光器相比,这种具有模式可重构特性的动态激光器可大大提高和丰富激光光源的灵活性和功能性,将有望为光通信、超分辨成像、微粒操控以及激光加工等领域带来更多可能性。

wKgZO2dshYCATIgIAAzDXsWqKsE497.jpg

图.动态可重构结构光源的设计。(A)MEMS-OMS的设计原理;(B)激光器的结构示意图。

具体地,MEMS-OMS由在SiO2基板上加工的OMS微纳结构和由电压驱动的MEMS反射镜组装而成。其光学响应受控于OMS纳米棒和MEMS反射镜复合结构内部的等离激元/法布里-珀罗耦合谐振。通过对MEMS反射镜施加电压Vm可以精确控制其和OMS层之间的气隙Ta,实现OMS层功能的高效关闭(普通反射镜)和开启(涡旋半波片),从而获得高斯光束和携带轨道角动量(OAM)的涡旋光束的动态切换。

将MEMS-OMS集成到一个由光纤镜、MEMS-OMS和部分透射的输出耦合镜构成的V形光纤激光腔中,仅通过切换驱动电压,即可在腔内对光场直接调制并生成具有可重构模式的结构光束,开创了可调谐激光光源设计的新范式。

OMS通过电子束光刻、剥离等工艺制备,与MEMS微镜组装后的MEMS-OMS在两个工作状态下具有>80%的工作效率。将其集成到激光腔后,在Vm1 = 4.4 V和Vm2 = 6.8 V时,MEMS-OMS分别可以在镜面反射和涡旋半波片的两个操作状态之间重新配置,从而在1030 nm波长附近实现高斯和涡旋模式的快速切换(~100 μs),涡旋光束纯度可达>95%。

wKgZPGdshYCAFODqAAG8ufxOcbY116.jpg

图.MEMS-OMS的表征和激光器的输出特性。(A)OMS的扫描电镜图;(B)组装的MEMS-OMS的细节展示;(C)interwetten与威廉的赔率体系 的两偏振通道的反射率和对比度随Ta的变化;(D)MEMS-OMS的响应时间;(E)高斯和涡旋光束的强度分布和自干涉图样。

当问及该项研究的应用场景,研发团队成员王传硕同学说到:“腔内MEMS-OMS的激光器系统为产生高纯度快速可切换激光模式提供了一种源头上的解决方案。这一系统具有广泛的潜在应用场景。例如,在先进光学成像中,我们可以通过关闭和打开螺旋相位轮廓,在普通明场成像(下图第一行)和二维边缘检测成像(下图第二行)之间实现快速切换。这种成像威廉希尔官方网站 在增强现实(AR)中能够提供更真实的深度感知与环境模拟,在生物医学领域,为精准治疗和高精度检测提供了强有力的威廉希尔官方网站 支持。”

wKgZO2dshYCADHl6AAFt3-AASgo193.jpg

在先进光学成像中的应用,图中为洋葱表皮细胞

通过持续的威廉希尔官方网站 优化和与其他领域的深度融合,这项威廉希尔官方网站 有望推动更加个性化和智能化的应用创新。无论是在提升日常生活中的显示效果、提供更加精准的医疗治疗,还是在激光加工中提高效率,它都将显著改变我们的生活方式,并最终转化为切实改善生活质量的实际应用。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • mems
    +关注

    关注

    129

    文章

    3931

    浏览量

    190624
  • 激光器
    +关注

    关注

    17

    文章

    2517

    浏览量

    60368
收藏 人收藏

    评论

    相关推荐

    什么是表面光学威廉希尔官方网站 ?

    光学表面 目前,表面光学威廉希尔官方网站 备受关注。简单来说,表面光
    的头像 发表于 12-18 06:25 159次阅读

    VirtualLab Fusion应用:Ince-Gaussian光束产生涡旋阵列激光束的观测

    Fusion中建立系统 系统构建块-光源 系统构建块-组件和检测 涡旋阵列激光束产生的模拟 光源中使用不同模态阶数生成涡旋阵列 椭圆度参数对涡流阵列方向图的影响 小结-系
    发表于 12-09 13:00

    基于相变材料的重构表面用于图像处理

    光学表面(metasurface)实现了在亚波长尺度内的模拟计算和图像处理,并具备更低的功耗、更快的速度。虽然人们已经展示了各种图像处理
    的头像 发表于 11-13 10:24 258次阅读
    基于相变材料的<b class='flag-5'>可</b>重构<b class='flag-5'>超</b><b class='flag-5'>构</b><b class='flag-5'>表面</b>用于图像处理

    电子科普!什么是激光二极管(半导体激光器

    光学谐振腔,发出的激光束与衬底表面垂直。具有阈值电流小、能以低电流高速调制、温度稳定性好等特点,被广泛应用于光通信和传感领域。 垂直腔面发射
    发表于 11-08 11:32

    石墨烯在激光器中的应用

    石墨烯在激光器中的应用是一个广泛而深入的研究领域,其独特的电学、热学和光学性质为激光器的性能提升和应用拓展提供了新的可能性。以下将详细探讨石墨烯在激光器中的具体应用、优势、挑战以及未来
    的头像 发表于 08-09 10:47 561次阅读

    夏季防“结露”,让激光器平安度夏

    什么是结露? 结露是指空气中的水汽达到饱和状态,遇到低温物体表面凝结成水析出的现象。激光器通常采用水冷降温,激光器腔体本身的温度一般会低于环境温度,一旦环境湿度升高、温度升高,腔体温度就很容易达到
    的头像 发表于 06-29 08:40 605次阅读
    夏季防“结露”,让<b class='flag-5'>激光器</b>平安度夏

    激发专属跃迁:用于皮肤医美和光学研究种子源的DPSS激光器

    紧凑、坚固、稳定和提供高质量光束的友思特DPSS激光器因其卓越的性能,可作为激光种子源,广泛应用于皮肤医美、非线性光学OPO,以及全息投影威廉希尔官方网站 ,并将开发出更多丰富的激光器应用。
    的头像 发表于 05-09 17:20 604次阅读
    激发专属跃迁:用于皮肤医美和<b class='flag-5'>光学</b>研究种子源的DPSS<b class='flag-5'>激光器</b>

    用于制造紫外表面的定制化高折射率纳米复合材料

    纳米压印光刻(NIL)威廉希尔官方网站 已被用于解决光学表面(metasurfaces)的高成本和低产量的制造挑战。为了克服以低折射率(n)为特征的传统压印树脂的固有局限性,引入了高折射率纳米复
    的头像 发表于 05-09 09:09 603次阅读
    用于制造紫外<b class='flag-5'>超</b><b class='flag-5'>构</b><b class='flag-5'>表面</b>的定制化高折射率纳米复合材料

    波长可调激光器中的增益芯片和SOA

    相似,也有一些不同之处。位于可调激光期后面的SOA应该偏振相关,并且具有低的光学限制因子。为了在阈值电流下获得宽的增益带宽,可调激光腔中使用的增益芯片应该介于SOA和固定波长激光器设计
    的头像 发表于 04-08 10:41 1223次阅读
    波长可调<b class='flag-5'>激光器</b>中的增益芯片和SOA

    一种基于液晶的新型可调介电表面,为传统液晶器件带来经济价值

    介电表面(metasurfaces)是当前光学领域最前沿的研究和应用方向之一,其不仅具有低损耗优势,还能实现亚波长级的器件厚度。
    的头像 发表于 04-08 09:08 617次阅读
    一种基于液晶的新型可调介电<b class='flag-5'>超</b><b class='flag-5'>构</b><b class='flag-5'>表面</b>,为传统液晶器件带来经济价值

    什么是激光器

    一、激光器的概念 激光器通常指用于发射超短脉冲的锁模激光器,例如,持续时间为飞秒或皮秒的脉冲。更精确的叫法应为超短脉冲
    的头像 发表于 04-08 06:33 821次阅读
    什么是<b class='flag-5'>超</b>快<b class='flag-5'>激光器</b>?

    探讨三种器件表面的加工方法

    表面是近年来出现一种新型的光学器件,也被称为器件。
    的头像 发表于 03-19 15:23 720次阅读
    探讨三种<b class='flag-5'>超</b><b class='flag-5'>构</b>器件<b class='flag-5'>表面</b>的加工方法

    基于表面的拉普拉斯光学微分处理可用于光学成像

    近日,北京理工大学黄玲玲教授团队实现基于表面的拉普拉斯光学微分处理,可以激发对入射角度具有选择性的环形偶极共振
    的头像 发表于 03-04 09:24 1190次阅读
    基于<b class='flag-5'>超</b><b class='flag-5'>构</b><b class='flag-5'>表面</b>的拉普拉斯<b class='flag-5'>光学</b>微分处理<b class='flag-5'>器</b>可用于<b class='flag-5'>光学</b>成像

    COMSOL Multiphysics在材料与表面仿真中的应用

    的透射反射分析。此外,COMSOL Multiphysics还提供了丰富的物理场求解,可以对表面光学性能进行详细分析。 周期性
    发表于 02-20 09:20

    VCSEL激光器与EEL激光器的区别

    。 1. 结构区别: VCSEL激光器的结构相对简单,包括n型和p型半导体材料,中间有一个双折射层,形成垂直腔导致垂直方向发射激光。而EEL激光器则包含多层结构,其中包括高反射率反射镜和活动区,一般需要外接
    的头像 发表于 01-31 10:15 5741次阅读