0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

论光伏直流智能充电桩的有序充电策略及其应用实践

安科瑞直发 来源:jf_31793424 作者:jf_31793424 2024-10-30 10:45 次阅读

摘要:在当下能源转型的大背景之中,光伏 - 直流智能充电桩凭借其高效、环保的显著特性,正逐渐成为未来充电基础设施的关键发展走向。本文深入探究其有序充电策略以及应用成效。鉴于光伏电能产出与电动汽车充电需求在时间维度上存在不匹配的情况,给电网稳定性带来了较大压力,故而提出一种全新的有序充电策略,旨在满足充电需求的基础上,减少外网供电量,有效提升光伏的自消纳能力以及负荷满足率。

关键词:充电桩;有序充电策略;电动汽车;S2V;直流系统

0引言

在双碳目标的引领下,以风能和太阳能发电为主的可再生能源将得到广泛应用。建筑屋顶光伏作为其中的重要组成部分,到 2025 年,公共机构新建建筑屋顶光伏覆盖率预计将达到 50%,以建筑屋顶光伏系统为代表的分布式能源系统也会大量应用。然而,大规模分布式光伏接入电网可能会对电网的安全运行产生不利影响,如何有效实现就地消纳是亟待研究的问题。电动汽车市场呈现出蓬勃发展的态势,预计到 2030 年中国将拥有约 8000 万辆电动汽车。如此庞大的数量,其充电需求必然会对区域电力系统造成巨大压力。值得注意的是,约 90% 以上的私家电动汽车在大部分时间都停放在建筑内或周边停车场,这使得其充电过程与建筑能源系统紧密融合。因此,探究电动汽车与建筑光伏的互动方式,并挖掘其对建筑光伏的利用潜力,对于降低碳排放具有重要意义。

自 2009 年利用太阳能为电动汽车充电(S2V)的概念提出后,相关硬件、经济性和策略方面的研究成果不断涌现。但目前电动汽车主要采用恒功率充电模式,这导致了大量的瞬时尖峰负荷,给电网带来了沉重的压力。同时,光伏电力具有波动性、随机性和间歇性等不稳定特征,与电力需求侧的负荷匹配度较低。在实际的 S2V 场景中,常常需要从电网获取电力为电动汽车充电,而部分光伏电能却无法得到有效利用。因此,设计一种新的有序充电策略,使电动汽车充电需求与光伏发电特性相适应,对于绿色电能的消纳至关重要。

1.光伏-直流智能充电桩的优势

1.1环保节能

利用太阳能进行光伏发电,可大幅减少对传统化石能源的依赖,降低碳排放。与传统交流充电桩相比,直流充电桩的充电速度更快,能够更有效地为电动汽车提供能量。

1.2稳定可靠

光伏系统能够在白天为充电桩提供相对稳定的电力供应,降低电网波动对充电过程的影响。同时,智能充电桩配备了完善的保护功能,切实保障充电安全可靠。

1.3成本效益

尽管初期投资相对较高,但从长远来看,光伏 - 直流智能充电桩可以降低运营成本。通过利用太阳能,减少了电费支出,同时提高了充电设施的利用率。

2.有序充电策略

2.1智能调度

通过充电桩与电网的通信,实现智能调度。根据电网负荷情况、光伏发电量以及电动汽车的充电需求,合理安排充电时间和功率,避免在高峰时段充电,减轻电网压力。
例如,在电网负荷较低的时段,如夜间或凌晨,提高充电桩的输出功率,加快充电速度;而在电网负荷高峰时段,降低充电功率或暂停充电,以平衡电网供需。

2.2功率控制

根据电动汽车的电池状态和充电需求,动态调整充电功率。当电池电量较低时,采用较大功率充电,以缩短充电时间;当电池电量接近充满时,降低充电功率,保护电池寿命。
此外,还可以通过智能控制算法,实现多辆电动汽车的功率分配,确保每辆车都能在合理的时间内完成充电。

2.3光伏发电优先利用

充分利用光伏系统的发电量,优先为电动汽车充电。当光伏发电量大于充电需求时,可以将多余的电量存储起来或回馈电网;当光伏发电量不足时,再从电网获取电力。
这样不仅可以提高光伏系统的利用率,还能减少对电网的依赖,降低充电成本。

3.应用效果

3.1缓解电网压力

通过有序充电策略,光伏 - 直流智能充电桩可以在一定程度上缓解电网压力。避免高峰时段充电,减少了电网负荷峰值,提高了电网的稳定性和可靠性。

3.2提高充电效率

智能调度和功率控制策略可以根据电动汽车的实际需求,合理安排充电时间和功率,提高充电效率。同时,直流充电桩的快速充电特性也缩短了用户的充电时间,提升了用户体验。

3.3促进可再生能源发展

光伏 - 直流智能充电桩的推广应用,有助于促进可再生能源的发展。增加了太阳能等清洁能源在能源消费中的比重,为实现可持续发展目标做出贡献。

3.4降低运营成本

利用光伏发电和有序充电策略,可以降低充电桩的运营成本。减少电费支出,提高经济效益,同时也为充电桩运营商带来更多的商业机会。

4安科瑞充电桩收费运营云平台助力有序充电开展

4.1概述

AcrelCloud - 9000 安科瑞充电柱收费运营云平台系统通过物联网威廉希尔官方网站 对接入系统的电动自行车充电站以及各个充电桩进行不间断的数据采集和监控,实时监控充电桩运行状态,进行充电服务、支付管理,交易结算,资要管理、电能管理,明细查询等。同时对充电机过温保护、漏电、充电机输入 / 输出过压,欠压,绝缘低各类故障进行预警;充电桩支持以太网4G 或 WIFI 等方式接入互联网,用户通过微信、支付宝,云闪付扫码充电。

4.2应用场所

适用于民用建筑、一般工业建筑、居住小区、实业单位、商业综合体、学校、园区等充电桩模式的充电基础设施设计。

4.3系统结构

wKgZoWchnZSAAEbqAABtvTmgxtY75.jpeg

系统分为四层:

1)即数据采集层、网络传输层、数据层和客户端层。

2)数据采集层:包括电瓶车智能充电桩通讯协议为标准modbus-rtu。电瓶车智能充电桩用于采集充电回路的电力参数,并进行电能计量和保护。

3)网络传输层:通过4G网络将数据上传至搭建好的数据库服务器。

4)数据层:包含应用服务器和数据服务器,应用服务器部署数据采集服务、WEB网站,数据服务器部署实时数据库、历史数据库、基础数据库。

5)应客户端层:系统管理员可在浏览器中访问电瓶车充电桩收费平台。终端充电用户通过刷卡扫码的方式启动充电。

小区充电平台功能主要涵盖充电设施智能化大屏、实时监控、交易管理、故障管理、统计分析、基础数据管理等功能,同时为运维人员提供运维APP,充电用户提供充电小程序。

4.4安科瑞充电桩云平台系统功能

4.4.1智能化大屏

智能化大屏展示站点分布情况,对设备状态、设备使用率、充电次数、充电时长、充电金额、充电度数、充电桩故障等进行统计显示,同时可查看每个站点的站点信息、充电桩列表、充电记录、收益、能耗、故障记录等。统一管理小区充电桩,查看设备使用率,合理分配资源。

wKgaoWchnZSAZKH2AAqxGhRCLC4669.png

4.4.2实时监控

实时监视充电设施运行状况,主要包括充电桩运行状态、回路状态、充电过程中的充电电量、充电电压电流,充电桩告警信息等。

wKgZoWchnZWAPfChAAOhF2wFGF4018.png

4.4.3交易管理

平台管理人员可管理充电用户账户,对其进行账户进行充值、退款、冻结、注销等操作,可查看小区用户每日的充电交易详细信息。

wKgaoWchnZaAT7YkAAKuwi6fjxY354.png

4.4.4故障管理

设备自动上报故障信息,平台管理人员可通过平台查看故障信息并进行派发处理,同时运维人员可通过运维APP收取故障推送,运维人员在运维工作完成后将结果上报。充电用户也可通过充电小程序反馈现场问题。

wKgZoWchnZaAJ2liAAIq8maPbg8511.png

4.4.5统计分析

通过系统平台,从充电站点、充电设施、、充电时间、充电方式等不同角度,查询充电交易统计信息、能耗统计信息等。

wKgaoWchnZeARAVdAAMcBtXGNpU062.png

4.4.6基础数据管理

在系统平台建立运营商户,运营商可建立和管理其运营所需站点和充电设施,维护充电设施信息、价格策略、折扣、优惠活动,同时可管理在线卡用户充值、冻结和解绑。

wKgZoWchnZiAUCQRAALA3kisbk4419.png

4.4.7运维APP

面向运维人员使用,可以对站点和充电桩进行管理、能够进行故障闭环处理、查询流量卡使用情况、查询充电充值情况,进行远程参数设置,同时可接收故障推送

wKgaoWchnZiAUNlWAAByyNLiCdc39.jpegwKgZoWchnZiAcZXrAABYB4ezEwY55.jpeg

4.4.8充电小程序

面向充电用户使用,可查看附近空闲设备,主要包含扫码充电、账户充值,充电卡绑定、交易查询、故障申诉等功能。

wKgaoWchnZmACxX7AACCobkqXik82.jpegwKgZoWchnZmAZ0TYAABYINU1xWU30.jpeg

4.5系统硬件配置

类型 型号 图片 功能
安科瑞充电桩收费运营云平台 AcrelCloud-9000 wKgaoWchnZqAXBgLAAB6VI-vH74621.png 安科瑞响应节能环保、绿色出行的号召,为广大用户提供慢充和快充两种充电方式壁挂式、落地式等多种类型的充电桩,包含智能7kW交流充电桩,30kW壁挂式直流充电桩,智能60kW/120kW直流一体式充电桩等来满足新能源汽车行业快速、经济、智能运营管理的市场需求,提供电动汽车充电软件解决方案,可以随时随地享受便捷安全的充电服务,微信扫一扫、微信公众号、支付宝扫一扫、支付宝服务窗,充电方式多样化,为车主用户提供便捷、安全的充电服务。实现对动力电池快速、安全、合理的电量补给,能计时,计电度、计金额作为市民购电终端,同时为提高公共充电桩的效率和实用性。
互联网版智能交流桩 AEV-AC007D wKgZoWchnZqAADBvAAAbwsjY1w869.jpeg 额定功率7kW,单相三线制,防护等级IP65,具备防雷
保护、过载保护、短路保护、漏电保护、智能监测、智能计量、远程升级,支持刷卡、扫码、即插即用。
通讯方:4G/wifi/蓝牙支持刷卡,扫码、免费充电可选配显示屏
互联网版智能直流桩 AEV-DC030D wKgaomchnZuAXXtJAABOBMHJgkQ633.png 额定功率30kW,三相五线制,防护等级IP54,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、恒流恒压、电池保护、远
程升级,支持刷卡、扫码、即插即用
通讯方式:4G/以太网
支持刷卡,扫码、免费充电
互联网版智能直流桩 AEV-DC060S wKgZomchnZuAYwL7AABOBMHJgkQ710.png 额定功率60kW,三相五线制,防护等级IP54,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、恒流恒压、电池保护、远程升级,支持刷卡、扫码、即插即用
通讯方式:4G/以太网
支持刷卡,扫码、免费充电
互联网版智能直流桩 AEV-DC120S wKgaomchnZ-AXMEIAABZdyT8bj8858.png 额定功率120kW,三相五线制,防护等级IP54,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、恒流恒压、电池保护、远程升级,支持刷卡、扫码、即插即用
通讯方式:4G/以太网
支持刷卡,扫码、免费充电
10路电瓶车智能充电桩 ACX10A系列 wKgZomchnaSAQalzAACnsPcQais111.png 10路承载电流25A,单路输出电流3A,单回路功率1000W,总功率5500W。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别、独立计量、告警上报。
ACX10A-TYHN:防护等级IP21,支持投币、刷卡,扫码、免费充电
ACX10A-TYN:防护等级IP21,支持投币、刷卡,免费充电
ACX10A-YHW:防护等级IP65,支持刷卡,扫码,免费充电
ACX10A-YHN:防护等级IP21,支持刷卡,扫码,免费充电
ACX10A-YW:防护等级IP65,支持刷卡、免费充电
ACX10A-MW:防护等级IP65,仅支持免费充电
2路智能插座 ACX2A系列 wKgaomchnaSAKNk-AABrUuWsGho707.png 2路承载电流20A,单路输出电流10A,单回路功率2200W,总功率4400W。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别,报警上报。
ACX2A-YHN:防护等级IP21,支持刷卡、扫码充电
ACX2A-HN:防护等级IP21,支持扫码充电
ACX2A-YN:防护等级IP21,支持刷卡充电
20路电瓶车智能充电桩 ACX20A系列 wKgZomchnaWALPkAAACYRiOIRD8875.png 20路承载电流50A,单路输出电流3A,单回路功率1000W,总功率11kW。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别,报警上报。
ACX20A-YHN:防护等级IP21,支持刷卡,扫码,免费充电
ACX20A-YN:防护等级IP21,支持刷卡,免费充电
落地式电瓶车智能充电桩 ACX10B系列 wKgaomchnaaAWe6QAAA0_TYaFrM013.png 10路承载电流25A,单路输出电流3A,单回路功率1000W,总功率5500W。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别、独立计量、告警上报。
ACX10B-YHW:户外使用,落地式安装,包含1台主机及5根立柱,支持刷卡、扫码充电,不带广告屏
ACX10B-YHW-LL:户外使用,落地式安装,包含1台主机及5根立柱,支持刷卡、扫码充电。液晶屏支持U盘本地投放图片及视频广告
绝缘监测仪 AIM-D100-ES wKgZomchnaiAIpMgAAB0ULwSwp8731.png AIM-D100-ES系列直流绝缘监测仪可以应用在15~1500V的直流系统中,用于在线监测直流不接地系统正负极对地绝缘电阻,当绝缘电阻低于设定值时,发出预警或报警信号
绝缘监测仪 AIM-D100-T wKgaomchnauABDzYAACh6tXEjXk573.png AIM-D100-T系列直流绝缘监测仪可以应用在10~1000V的直流系统中,用于在线监测直流不接地系统正负极对地绝缘电阻,当绝缘电阻低于设定值时,发出预警或报警信号。
智能边缘计算网关 ANet-2E4SM wKgZomchnayAaCM2AADINxWvOmo893.png 4路RS485串口,光耦隔离,2路以太网接口,支持ModbusRtu、ModbusTCP、DL/T645-1997、DL/T645-2007、CJT188-2004、OPCUA、ModbusTCP(主、从)、104(主、从)、建筑能耗、SNMP、MQTT;(主模块)输入电源:DC12V~36V。支持4G扩展模块,485扩展模块。
扩展模块ANet-485 M485模块:4路光耦隔离RS485
扩展模块ANet-M4G M4G模块:支持4G全网通
导轨式单相电表 ADL200 wKgaomchnayAAaNiAAB4BBVrj1I608.png 单相电参量U、I、P、Q、S、PF、F测量,输入电流:10(80)A;
电能精度:1级
支持Modbus和645协议
证书:MID/CE认证
导轨式电能计量表 ADL400 wKgaomchna2AA3BQAAEC6tSH6mY716.png 三相电参量U、I、P、Q、S、PF、F测量,分相总有功电能,总正反向有功电能统计,总正反向无功电能统计;红外通讯;电流规格:经互感器接入3×1(6)A,直接接入3×10(80)A,有功电能精度0.5S级,无功电能精度2级
证书:MID/CE认证
无线计量仪表 ADW300 wKgZomchna6AVymzAACdr_S6Fvk395.png 三相电参量U、I、P、Q、S、PF、F测量,有功电能计量(正、反向)、四象限无功电能、总谐波含量、分次谐波含量(2~31次);A、B、C、N四路测温;1路剩余电流测量;支持RS485/LoRa/2G/4G/NB;LCD显示;有功电能精度:0.5S级(改造项目)
证书:CPA/CE认证
导轨式直流电表 DJSF1352-RN wKgaomchna6AMiGYAAAbVUYocQI72.jpeg 直流电压、电流、功率测量,正反向电能计量,复费率电能统计,SOE事件记录:8位LCD显示:红外通讯:电压输入*大1000V,电流外接分流器接入(75mV)或霍尔元件接入(0-5V);电能精度1级,1路485通讯,1路直流电能计量AC/DC85-265V供电
证书:MID/CE认证
面板直流电表 PZ72L-DE wKgZomchna6AUhocAAAggSzVCIU43.jpeg 直流电压、电流、功率测量,正反向电能计量:红外通讯:电压输入*大1000V,电流外接分流器接入·(75mV)或霍尔元件接入(0-20mA0-5V);电能精度1级
证书:CE认证
电气防火限流式保护器 ASCP200-63D wKgaomchna-ARbKsAAAYJEh6zAU43.jpeg 导轨式安装,可实现短路限流灭弧保护、过载限流保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测等功能;1路RS485通讯,1路NB或4G无线通讯(选配);额定电流为0~63A,额定电流菜单可设。
开口式电流互感器 AKH-0.66/K wKgZomchna-AGFnWAAAgpuu4kyM11.jpeg AKH-0.66K系列开口式电流互感器安装方便,无须拆一次母线,亦可带电操作,不影响客户正常用电,可与继电器保护、测量以及计量装置配套使用。
霍尔传感器 AHKC wKgaomchnbCAcVnaAAAeSiYr5V447.jpeg 霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSPPLC、二次仪表等各种采集装置直接采集和接受,响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强。
智能剩余电流继电器 ASJ wKgZomchnbCAa6JwAAAeXm4e2tc55.jpeg 该系列继电器可与低压断路器或低压接触器等组成组合式的剩余电流动作保护器,主要适用于交流50Hz,额定电压为400V及以下的TT或TN系统配电线路,防止接地故障电流引起的设备和电气火灾事故,也可用于对人身触电危险提供间接接触保护。

5.未来展望

随着电动汽车市场的不断发展和可再生能源威廉希尔官方网站 的进步,光伏-直流智能充电桩的应用前景广阔。未来,我们可以期待以下发展趋势:

(1)威廉希尔官方网站 创新

不断提升光伏系统的效率和稳定性,优化充电桩的智能控制算法,提高充电速度和安全性。同时,探索新的储能威廉希尔官方网站 ,实现光伏发电的有效存储和利用。

(2)政策支持

政府部门应加大对光伏-直流智能充电桩的政策支持力度,包括补贴、税收优惠等,鼓励企业和社会资本参与充电基础设施建设。

(3)互联互通

实现充电桩与电动汽车、电网、能源管理系统等的互联互通,形成智能化的能源生态系统。通过大数据分析和人工智能威廉希尔官方网站 ,优化充电策略,提高能源利用效率。

总之,光伏-直流智能充电桩的有序充电策略具有重要的现实意义和应用价值。通过合理的规划和管理,可以充分发挥其优势,为电动汽车用户提供有效、便捷、环保的充电服务,同时也为能源转型和可持续发展做出贡献。

参考文献:

[1] 丁屹峰.光伏直流智能充电桩有序充电策略与应用效果

[2] 詹天津,谢玉荣国内分布式光伏发展形势分析及思考

[3] 安科瑞企业微电网设计与应用手册.2022.05版

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12069

    浏览量

    231117
  • 光伏
    +关注

    关注

    43

    文章

    2969

    浏览量

    68883
  • 智能充电桩
    +关注

    关注

    2

    文章

    68

    浏览量

    3856
收藏 人收藏

    评论

    相关推荐

    基于变电站 - 小区充电接入控制的电动汽车有序充电策略

    - 小区充电接入控制模式,通过深入剖析小区电动汽车充电行为,提出两阶段优化调度策略。在满足电动汽车充电负荷需求的约束条件下,首先以变电站
    的头像 发表于 12-10 15:19 640次阅读
    基于变电站 - 小区<b class='flag-5'>充电</b><b class='flag-5'>桩</b>接入控制的电动汽车<b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b>

    充电小科普】如何分辨直流充电和交流充电

    解决方案.今日为各位网友充电的问题!大家知道,充电是给电动汽车”加油”的充电设施,充电
    发表于 07-13 15:54

    直流充电的区别

    具备充电功能, 其只是单纯提供电力输出, 还需要连接电动汽车车载充电机,方可起到为电动汽车电池充电的作用。 由于电动汽车车载充电机的功率一般都比较小,所以交流
    发表于 11-27 14:27

    请问直流充电和交流充电的区别是什么?

    本帖最后由 一只耳朵怪 于 2018-6-5 16:22 编辑 现在市场上有越来越多的交、直流充电,那么我们如何区分他们呢?南京阿尔克为你讲解交、直流
    发表于 06-05 10:41

    直流充电区别

    直流电动汽车充电站,俗称就是“快充”,它是固定安装在电动汽车外,与交流电网连接,可以为非车载电动汽车动力电池提供直流电源的供电装置。直流充电
    发表于 11-22 16:58

    直流充电和交流充电的区别

    针对电动车讲述直流充电和交流充电的区别
    发表于 12-31 16:06 0次下载

    如何分辨直流充电和交流充电

    大家知道,充电是给电动汽车”加油”的充电设施,学名叫“非车载充电机”。充电又分为交流
    发表于 05-27 13:45 1.6w次阅读
    如何分辨<b class='flag-5'>直流</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b>和交流<b class='flag-5'>充电</b><b class='flag-5'>桩</b>?

    浅谈直流智能充电有序充电策略与应用效果

    -直流智能充电有序充电策略,在满足
    的头像 发表于 10-14 09:32 310次阅读
    浅谈<b class='flag-5'>光</b><b class='flag-5'>伏</b><b class='flag-5'>直流</b><b class='flag-5'>智能</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b>与应用效果

    浅谈直流充电智能有序充电策略与应用效果

    -直流智能充电有序充电策略,在满足
    的头像 发表于 10-15 16:55 320次阅读
    浅谈<b class='flag-5'>光</b><b class='flag-5'>伏</b><b class='flag-5'>直流</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>智能有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b>与应用效果

    直流智能充电有序充电策略及其应用探析

    摘要 :在当下能源转型的大环境中, - 直流智能充电凭借其高效、环保的显著特性,正逐步成为
    的头像 发表于 10-30 10:05 193次阅读
    <b class='flag-5'>光</b><b class='flag-5'>伏</b><b class='flag-5'>直流</b><b class='flag-5'>智能</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b><b class='flag-5'>及其</b>应用探析

    浅谈-直流智能充电有序充电策略与应用效果--安科瑞张田田

    摘要:在当今能源转型的大背景下,-直流智能充电凭借其有效、环保的特点,正逐渐成为未来
    的头像 发表于 11-11 13:32 176次阅读
    浅谈<b class='flag-5'>光</b><b class='flag-5'>伏</b>-<b class='flag-5'>直流</b><b class='flag-5'>智能</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b>与应用效果--安科瑞张田田

    浅谈-直流智能充电有序充电策略与应用效果

    -直流智能充电有序
    的头像 发表于 11-11 13:48 320次阅读
    浅谈<b class='flag-5'>光</b><b class='flag-5'>伏</b>-<b class='flag-5'>直流</b><b class='flag-5'>智能</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b>与应用效果

    -直流智能充电有序充电策略与应用效果

    充电策略及其应用效果。然而,大量出力和电动汽车充电需求在时间上的不匹配,给电网稳定性带来较大
    的头像 发表于 11-11 17:10 340次阅读
    <b class='flag-5'>光</b><b class='flag-5'>伏</b>-<b class='flag-5'>直流</b><b class='flag-5'>智能</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b>与应用效果

    浅析充电有序充电与配电网需求侧响应结合的优异性分析及策略探索

    加剧的问题。随后,深入探讨了充电有序充电威廉希尔官方网站 与配电网需求侧响应相结合的优越性和实施策略,并以安科瑞充电
    的头像 发表于 11-18 13:37 234次阅读
    浅析<b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b>与配电网需求侧响应结合的优异性分析及<b class='flag-5'>策略</b>探索

    探究 - 直流智能充电有序充电策略及其应用成效

    安科瑞鲁一扬15821697760 摘要:于能源转型的浪潮中, - 直流智能充电以其高效、
    的头像 发表于 11-20 15:51 206次阅读
    探究<b class='flag-5'>光</b><b class='flag-5'>伏</b> - <b class='flag-5'>直流</b><b class='flag-5'>智能</b><b class='flag-5'>充电</b><b class='flag-5'>桩</b><b class='flag-5'>有序</b><b class='flag-5'>充电</b><b class='flag-5'>策略</b><b class='flag-5'>及其</b>应用成效