0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

模型驱动深度学习的标准流程与学习方法解析

mK5P_AItists 2018-01-24 11:30 次阅读

概要:近年来,深度学习人工智能领域一系列困难问题上取得了突破性成功应用。

模型驱动深度学习的标准流程与学习方法解析

模型驱动的深度学习方法

近年来,深度学习在人工智能领域一系列困难问题上取得了突破性成功应用。例如用于人脸识别已高于人的正确识别率、用于语音识别与机器翻译已接近达到同声翻译和‵讲完稿出'的水平、用于围棋竞赛已达到完胜人类世界冠军的水平、用于一些疾病的诊断巳能与中、高级专业医师水平匹敌。现在,深度学习威廉希尔官方网站 在信息科学各领域已无处不在、并正成为各自领域的标准方法。

尽管深度学习取得重大进展,但人们对人工神经网络拓扑与性能的对应关系仍然缺少理论上的认知,网络拓扑选择目前还是一项工程威廉希尔官方网站 而并没有成为科学。这直接导致了现有深度学习多半是缺少理论基础的启发式方法。设计难、解释难、结果不可预知已成为深度学习公认的缺撼。

《国家科学评论》最近发表了西安交通大学数学与统计学院徐宗本院士、孙剑教授撰写的“Model-driven deep learning”的观点文章(National Science Review, 2017,https://doi.org/10.1093/nsr/nwx099)。这篇文章尝试解决深度学习的网络拓扑选择问题,目的是实现可设计、可解释以及结果可预期的深度学习方法。文章提出一种模型驱动与数据驱动相结合深度学习方法。众所周知,深度学习是一种标准的数据驱动型方法,它将深度网络作为黑箱依赖于大量数据解决现实问题;而模型驱动方法则是从目标、机理、先验出发首先形成学习的一个代价函数,然后通过极小化代价函数来解决问题。模型驱动方法的最大优点是只要模型足够精确,解的质量可预期甚至能达到最优,而且求解方法是确定的,但模型驱动方法的缺陷是在应用中难能精确建模,而且对建模的精确性追求通常只能是一种奢望。

模型驱动深度学习方法有效结合了模型驱动和数据驱动方法的优势,文章中给出了模型驱动深度学习的标准流程:(1)根据问题,建立模型族(Family of Models);(2)根据模型族,设计算法族(Family of Algorithms)并建立算法族的收敛性理论;(3)将算法族展开(unfold)成深度网络并实施深度学习。文中还介绍了课题组研究并实践的一系列模型驱动与数据驱动结合的深度等习方法,展现了该方法在解决实际问题上的有效性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47207

    浏览量

    238280
  • 模型驱动
    +关注

    关注

    0

    文章

    5

    浏览量

    7448
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121117

原文标题:展望:模型驱动的深度学习

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI工程师 10 个深度学习方法

    学到了大量关于深度学习的相关知识。在这里,我想分享人工智能工程师 10 个用于解决机器学习问题的强大的深度学习方法。但是,我们首先需要定义什
    发表于 03-07 20:17

    深度学习模型是如何创建的?

    具有深度学习模型的嵌入式系统应用程序带来了巨大的好处。深度学习嵌入式系统已经改变了各个行业的企业和组织。
    发表于 10-27 06:34

    深度学习威廉希尔官方网站 的开发与应用

    2.算法设计 3.实验结果高频问题:如何将一个控制问题设计成马尔可夫决策问题并使用强化学习算法进行训练关键点:1.基于模型的离线强化学习方法 2.基于数据的在线强化学习方法实操
    发表于 04-21 14:57

    深度解析机器学习三类学习方法

    在机器学习(Machine learning)领域。主要有三类不同的学习方法:监督学习(Supervised learning)、非监督学习(Unsupervised learning
    发表于 05-07 09:09 1.4w次阅读

    针对线性回归模型深度学习模型,介绍了确定训练数据集规模的方法

    学习模型的表现会按照幂定律持续提升。例如,有人曾用深度学习方法对三亿张图像进行分类,发现模型的表现随着训练数据规模的增长按对数关系提升。
    的头像 发表于 05-05 11:03 6166次阅读

    深度讨论集成学习方法,解决AI实践难题

    集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功,并成为机器学习领域的“常青
    发表于 08-16 11:40 774次阅读
    <b class='flag-5'>深度</b>讨论集成<b class='flag-5'>学习方法</b>,解决AI实践难题

    深度学习中图像分割的方法和应用

    介绍使图像分割的方法,包括传统方法深度学习方法,以及应用场景。 基于人工智能和深度学习方法的现
    的头像 发表于 11-27 10:29 3173次阅读

    融合零样本学习和小样本学习的弱监督学习方法综述

    融合零样本学习和小样本学习的弱监督学习方法综述 来源:《系统工程与电子威廉希尔官方网站 》,作者潘崇煜等 摘 要: 深度学习
    发表于 02-09 11:22 2301次阅读
    融合零样本<b class='flag-5'>学习</b>和小样本<b class='flag-5'>学习</b>的弱监督<b class='flag-5'>学习方法</b>综述

    使用深度学习方法对音乐流派进行分类

    电子发烧友网站提供《使用深度学习方法对音乐流派进行分类.zip》资料免费下载
    发表于 02-08 10:02 1次下载
    使用<b class='flag-5'>深度</b><b class='flag-5'>学习方法</b>对音乐流派进行分类

    联合学习在传统机器学习方法中的应用

    联合学习在传统机器学习方法中的应用
    的头像 发表于 07-05 16:30 768次阅读
    联合<b class='flag-5'>学习</b>在传统机器<b class='flag-5'>学习方法</b>中的应用

    深度学习框架和深度学习算法教程

    基于神经网络的机器学习方法深度学习算法可以分为两大类:监督学习和无监督学习。监督学习的基本任
    的头像 发表于 08-17 16:11 1074次阅读

    梳理单片机学习方法、产品开发流程

    梳理单片机学习方法、产品开发流程
    的头像 发表于 09-21 17:20 641次阅读
    梳理单片机<b class='flag-5'>学习方法</b>、产品开发<b class='flag-5'>流程</b>

    深度学习的由来 深度学习的经典算法有哪些

    深度学习作为机器学习的一个分支,其学习方法可以分为监督学习和无监督学习。两种
    发表于 10-09 10:23 539次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>的由来 <b class='flag-5'>深度</b><b class='flag-5'>学习</b>的经典算法有哪些

    深度学习模型优化与调试方法

    深度学习模型在训练过程中,往往会遇到各种问题和挑战,如过拟合、欠拟合、梯度消失或爆炸等。因此,对深度学习
    的头像 发表于 07-01 11:41 806次阅读

    深度学习中的无监督学习方法综述

    应用中往往难以实现。因此,无监督学习深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的无监督
    的头像 发表于 07-09 10:50 687次阅读