0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谷歌AutoML系统自动开发出计算机视觉模型,远超最先进的模型

人工智能和机器人研究院 2017-12-07 16:58 次阅读

Google的AutoML项目旨在让人工智能自主建立其他人工智能,现在已经开发了一个计算机视觉系统,远远超过了最先进的模型。该项目可以改善自动驾驶和下一代人工智能机器人“看到”的方式。

AI可以自己“孕育”AI

2017年5月,Google Brain的研究人员宣布创建AutoML--一种能够让AI生成AI的人工智能。 最近,他们决定向AutoML提出迄今为止最大的挑战,使得AI可以自己“孕育”AI,创建了一个超过所有人类智慧的“孩子”。

Google的研究人员使用一种称为强化学习的方法来自动设计机器学习模型。 AutoML充当一个神经网络控制器,为特定任务开发一个子AI网络。 对于研究人员称为NASNet的这个特殊的儿童AI来说,这个任务是实时地在视频中识别物体:人,汽车,交通信号灯,手袋,背包等等。

AutoML将评估NASNet的性能,并使用这些信息来改善其子AI,重复这个过程数千次。 在Google研究人员称为“计算机视觉领域最受尊敬的两个大型学术数据集”的ImageNet图像分类和COCO目标检测数据集上进行测试时,NASNet胜过了所有其他计算机视觉系统。

据研究人员介绍,NASNet在预测ImageNet验证集上的图像时准确率为82.7%。 这比以前公布的结果好1.2%,系统效率也提高了4%,平均精确度(mAP)平均为43.1%。另外,对NASNet的计算要求较低的版本比类似尺寸最佳的移动平台版本高3.1%。

未来的应用

机器学习是许多AI系统执行特定任务的能力。 虽然背后的概念相当简单 - 一个算法通过提供大量数据来学习 - 这个过程需要花费大量的时间和精力。 通过自动化创建准确,高效的AI系统的过程,一个可以建立AI的AI首当其冲。 最终,这意味着AutoML可以向非专家开放机器学习和AI的领域。

NASNet由于潜在的应用数量的限制,高度精确,高效的计算机视觉算法受到追捧。正如一位研究人员所建议的,它们可以用来创建复杂的,由人工智能驱动的机器人,或者帮助视力受损的人恢复视力。 他们还可以帮助设计人员改进自驾车威廉希尔官方网站 。 自主车辆能够识别路径上的物体的速度越快,其对它们作出反应的速度就越快,从而增加了这种车辆的安全性。

Google的研究人员承认NASNet可以被广泛的应用证明是有用的,并且已经采用开源来进行图像分类和目标检测的推断。 他们在他们的博客文章中写道:“我们希望更大的机器学习社区能够建立在这些模型上,以解决我们还没有想到的大量计算机视觉问题。

(图片来源:Google Research)

尽管NASNet和AutoML的应用程序非常丰富,但是创建一个可以构建AI的AI却引起了一些关注。 例如,怎样防止父母将不想要的偏见传递给孩子? 如果AutoML创建系统如此之快以至于社会无法跟上呢? 在不久的将来,如何将NASNet应用于自动化监控系统并不是一件很困难的事情,也许很快就会制定相关法规来控制这些系统。

值得庆幸的是,世界各国领导人正在努力确保这样的系统不会导致任何反乌托邦式的未来。

亚马逊,Facebook,苹果和其他几个人都是AI造福人类社会的合作伙伴关系的成员,这个组织专注于人工智能朝负责任的方向发展。电气电子工程师协会(IEE)已经提出了AI的道德标准,而谷歌母公司Alphabet所拥有的研究公司DeepMind最近宣布成立一个专注于AI道德和伦理影响的小组。

各国政府也在制定法规来防止将人工智能用于危险目的,如自主武器,只要人类保持对人工智能发展总体方向的控制,拥有可以建立人工智能的人工智能的好处远远超过任何潜在的陷阱。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6164

    浏览量

    105314
  • 人工智能
    +关注

    关注

    1791

    文章

    47208

    浏览量

    238290

原文标题:谷歌AutoML系统自动开发出计算机视觉模型,性能优于人类水平

文章出处:【微信号:gh_ecbcc3b6eabf,微信公众号:人工智能和机器人研究院】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    计算机视觉威廉希尔官方网站 的AI算法模型

    计算机视觉威廉希尔官方网站 作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像及视频中的信息。为了实现这一目标,计算机视觉威廉希尔官方网站 依赖于
    的头像 发表于 07-24 12:46 809次阅读

    机器视觉计算机视觉有什么区别

    。机器视觉的研究目标是让机器具有类似人类的视觉能力,能够自动、准确地完成各种视觉任务。 计算机视觉
    的头像 发表于 07-16 10:23 522次阅读

    计算机视觉的工作原理和应用

    计算机视觉(Computer Vision,简称CV)是一门跨学科的研究领域,它利用计算机和数学算法来模拟人类视觉系统对图像和视频进行识别、理解、分析和处理。其核心目标在于使
    的头像 发表于 07-10 18:24 1918次阅读

    计算机视觉与人工智能的关系是什么

    引言 计算机视觉是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等多个领域的知识。人工智能则是研究如何使计算
    的头像 发表于 07-09 09:25 625次阅读

    计算机视觉与智能感知是干嘛的

    感知(Intelligent Perception)则是计算机视觉的一个分支,它强调计算机在处理视觉信息时的智能性和自适应性。 随着计算机
    的头像 发表于 07-09 09:23 919次阅读

    计算机视觉和机器视觉区别在哪

    ,旨在实现对图像和视频的自动分析和理解。 机器视觉 机器视觉计算机视觉的一个分支,主要应用于工业自动
    的头像 发表于 07-09 09:22 446次阅读

    计算机视觉在人工智能领域有哪些主要应用?

    与分类是计算机视觉的基础应用之一。通过训练机器学习模型计算机可以识别和分类各种图像,如动物、植物、物体等。这种威廉希尔官方网站 在许多领域都有应用,如搜索引擎、社交媒体、医疗诊断等。 1.1 图像
    的头像 发表于 07-09 09:14 1322次阅读

    计算机视觉属于人工智能吗

    和解释视觉信息,从而实现对图像和视频的自动分析和处理。 计算机视觉的基本概念 2.1 计算机视觉
    的头像 发表于 07-09 09:11 1294次阅读

    机器视觉计算机视觉的区别

    在人工智能和自动化威廉希尔官方网站 的快速发展中,机器视觉(Machine Vision, MV)和计算机视觉(Computer Vision, CV)作为两个重要的分支领域,都扮演着至关重要的角色
    的头像 发表于 06-06 17:24 1323次阅读

    计算机视觉的主要研究方向

    计算机视觉(Computer Vision, CV)作为人工智能领域的一个重要分支,致力于使计算机能够像人眼一样理解和解释图像和视频中的信息。随着深度学习、大数据等威廉希尔官方网站 的快速发展,计算机
    的头像 发表于 06-06 17:17 952次阅读

    谷歌模型怎么用手机打开

    要使用手机打开谷歌模型,首先需要明确一点:谷歌模型本身是在计算机上运行的程序或算法,而不是可以直接在手机上打开的应用程序。然而,你可以通过手
    的头像 发表于 03-01 16:23 618次阅读

    谷歌模型怎么用手机打开网页

    请注意,谷歌模型本身是一个计算机程序,它并不能直接在手机浏览器上运行。但是,你可以使用手机上的谷歌浏览器来访问和浏览网页,这些网页可能是由谷歌
    的头像 发表于 03-01 16:19 630次阅读

    谷歌交互世界模型重磅发布

    谷歌模型
    北京中科同志科技股份有限公司
    发布于 :2024年02月28日 09:13:06

    计算机视觉的十大算法

    随着科技的不断发展,计算机视觉领域也取得了长足的进步。本文将介绍计算机视觉领域的十大算法,包括它们的基本原理、应用场景和优缺点。这些算法在图像处理、目标检测、人脸识别等领域有着广泛的应
    的头像 发表于 02-19 13:26 1236次阅读
    <b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的十大算法

    计算机系统如何应对大模型时代的挑战与机遇

    “操作系统管理着计算机的资源和进程,以及所有的硬件和软件。计算机的操作系统让用户在不需要了解计算机语言的情况下与
    发表于 01-23 11:06 545次阅读
    <b class='flag-5'>计算机系统</b>如何应对大<b class='flag-5'>模型</b>时代的挑战与机遇