一、引言
随着工业威廉希尔官方网站 的发展,土壤污染日益严重,也给环境带来了危害。其中农业土壤中重金属含量增加,影响了农业的发展和食品安全。食用被重金属污染的农作物,会对人们的身体健康造成较大危害。激光诱导击穿光谱,属于原子发射光谱威廉希尔官方网站 ,激光对样品表面烧蚀后,样品表面物质吸收激光能量之后被蒸发产生等离子体,并激发到高能态,由于高能级状态并不稳定,在回到基态时会发出特定物质成分的特征光谱,通过对物质等离子体光谱的分析,可以满足对样品分类和定量分析的需要。现今为止LIBS已经在矿业、食品检测、环境监测等方面有广泛的应用。但LIBS威廉希尔官方网站 还存在着激光能量稳定性差,环境变化对等离子体产生的问题。内标法作为一种减小LIBS实验误差的数据处理方法,能有效降低激光器能量稳定性和环境变化对实验结果产生的影响。通过加入不同种类的粘结剂对实验进行优化。研究通过分析土壤中Cu元素和Pb元素的含量,寻找最优的激光能量和延迟时间参数,分析内标法和直接定标法的优劣。
实验装置
实验装置由脉冲激光器输出波长1064nm,频率1~10Hz,激光输出脉宽10ns,最大单脉冲能量900mJ、光谱仪光栅密度1800L/mm,探测范围200~1200nm,积分时间20μs、三维旋转平台、风控系统和光学透镜组成。通过平凸透镜(f=100mm)聚焦到放置在旋转台上的土壤样品表面,由自制衰减器控制能量大小,等离子体辐射光由与样品表面呈45°的光纤探测器接收。为了interwetten与威廉的赔率体系 真实的环境,土壤样品没有加入粘合剂,但由于激光器打到土壤表面会造成尘土飞溅,影响后续激光打到土壤表面的能量,因此在样品侧面放置一台风控装置提高等离子体吸收能量的稳定,并移动旋转平台,这样既保证了样品表面能量的吸收,创造了稳定的气流环境,还能减少腔体约束和元素分布不均带来的影响。
样品制备
3.1 油种反射率光谱
实验中的土壤取自自然土壤,经过烘干、研磨、过筛之后用电子天平称8份同质量的土壤样品,根据Cu元素和Pb元素的质量分数加入不同浓度的CuSO4·5H2O和Pb(NO3)2溶液充分混合,放入恒温烘干箱在50℃下烘干18h。再将土壤烘干之后用压片机在15MPa压强下压制成圆片(直径20mm,厚度2.5mm)。图1所示为实验仪器图。自制土壤样品的重金属含量如表1所示。
图1实验仪器图
表1土壤样品中Pb和Cu元素的掺杂含量
结果与讨论
4.1 谱线的选择
由于LIBS本身受激光器能量稳定性、元素分布均匀性、环境气体等因素的限制,会对实验测量结果造成影响,可以通过数据归一化、剔除异常值、正态分布分析等方法对原始光谱数据进行预处理。元素特征谱线的选取依据美国国家标准与威廉希尔官方网站 研究院的标准原子光谱数据库中的元素光谱谱线。由图2所示,土壤LIBS光谱中包含了Cu、Pb、Fe等元素的特征谱线。在选择谱线时,元素特征谱线都要具有较高的灵敏性和信背比,所以对Cu元素分析时选择Fe I 323.4nm作为分析线,Cu I 324.75nm谱线作为内标线。又因为Pb I 405.78nm谱线附近没有其他原子谱线的干扰,同时附近有符合定标规则的Fe I 404.58nm特征谱线,所以采用Fe I 404.58nm的原子谱线作为内标元素谱线。
图2土壤样品元素特征谱线
4.2 激光能量优化
激光脉冲能量对特征谱线的强度和信背比,以及谱峰强度稳定性都有一定影响,所以需要先找到LIBS实验适合的能量,再进行定标。将光谱仪延迟时间设置为2μs,积分时间20μs,激光频率1Hz,激光脉冲能量从40mJ调整至100mJ,每次增加10mJ,每次能量取60次的元素特征谱线强度做平均。图3为激光能量对等离子体辐射的影响。其中,横坐标为激光能量,纵坐标分别为信背比和谱线强度。
图3激光能量对等离子体辐射的影响
激光能量在40~70mJ时Cu I 324.75nm元素特征谱线的信背比和谱线强度增强显著。在70mJ之后信背比降低较快,谱线强度增强效果不明显,当激光能量继续增大时,即使等离子体谱线增强,由于存在等离子体屏蔽效应,形成的大量原子、电子和离子混合的等离子体,会反射激光脉冲的后沿能量,阻止激光束和材料的耦合作用,降低激光脉冲到达样品表面的能量,所以特征谱线强度增长效率降低在较高能量时,激光脉冲能较大范围地激发等离子体,同时这又减弱了元素分布不均带来的影响。所以实验选择信背比最高时激光能量为70mJ来进行试验。
4.3 延迟时间优化
根据等离子体的辐射特性,等离子体的产生主要受到轫致辐射和复合辐射的影响。随着等离子体密度的增加,连续背景光谱不断减弱,特征原子光谱突显,原子谱线的下降速度比连续背景光谱慢。在实验过程中,为了避免连续背景光的干扰,利用这个差值时间规避连续背景光,来检测特征原子谱线,得到较高的谱线。在激光能量70mJ下,光谱仪(积分时间20μs,激光频率1Hz,延迟时间设置变化范围为1~7μs,间隔0.5μs。每个延迟时间数据点取60次激光烧蚀谱线强度的平均值。
图4延迟时间对等离子体辐射的影响
待测元素谱线信噪比随着光谱仪延迟时间的变化如图4所示。
图4中显示,延迟时间在1~2μs时信背比增长迅速,原因是因为连续辐射的比例在减少,特征光谱线凸显,在2μs之后,等离子体冷却,特征光谱线衰减的速率比背景辐射速率快,导致信背比降低。所以该实验最佳选取延迟时间为2μs的时候进行光谱采集。
4.4 Cu、Pb元素谱线内标法的定标曲线及检出限
在LIBS定量分析中选用内标法绘制标准曲线,这种方法可以有效抑制基底效应的影响,提高准确度。根据定标法的分类可以分为背景定标法和元素内标法。
根据光谱定量的基本公式,将元素浓度和谱线强度之间的关系表述为
式中,I为谱线强度;C为待测元素浓度;a为与等离子体蒸发、激发和组成有关的系数;b为自吸收系数,因为土壤样品中Cu元素和Pb元素浓度较低,自吸收现象不明显,取b=1。
LIBS定标曲线的拟合公式由式(2)表示
式中,xi和yi分别代表样品浓度和谱线强度;xˉ和yˉ分别代表样品浓度和谱线强度的平均值。
在优化能量为70mJ,延迟时间为2μs的实验条件下,采取7个土壤样品的光谱,对同一个样品进行50次的光谱烧蚀数据剔除异常值之后做平均。
分别建立特征谱线强度Cu I 324.75nm和Cu I 324.75nm与Fe I 323.461nm谱线强度比为纵坐标,以Cu元素样本浓度为横坐标建立Cu元素的定标曲线如图5。
图5 Cu元素浓度的定标曲线
通过定标曲线可知,Cu元素特征谱线直接定标拟合系数为0.968;以Fe元素为内标线的定标曲线拟合系数为0.982。
分别建立以Pb I 405.78nm和以Pb I 405.78nm与Fe I 404.58nm谱线比值为纵坐标,Pb浓度为横坐标的定标曲线见图6。
图6 Pb元素浓度的定标曲线
通过图6可以得知,Pb元素特征谱线直接定标拟合系数为0.948;以Fe元素为内标线的定标曲线拟合系数为0.984。
Fe元素对Pb元素浓度进行定标与Pb谱峰强度直接定标相比拟合系数提高了3.6%。
结论
实验对Cu元素进行了LIBS实验测量,为了尽量消除基体效应的影响,提高实验的稳定性,优化实验参数得到了激光能量为70mJ;延迟时间为2μs。通过50次重复实验并剔除异常值和取平均提高数据的稳定性。实验选择Cu I 324.75nm和Pb I 405.78nm作为分析线,通过谱线强度直接定标得到的R2为0.968和0.948;通过Fe元素谱线强度作为内标线的内标法得到的拟合度为0.982和0.984,比直接定标分别提高了1.4%和3.7%。
根据结果分析,由于自制土壤样品存在基底效应,元素特征谱线受到其他元素干扰,所以通过内标法能够有效减少基底效应对定量分析的影响。根据两种方法的对比可以发现,采用土壤中的主题元素Fe作为内标线,很好的减弱了基底效应对实验结果的影响,对于检测土壤重金属污染和防治有重要意义。
推荐:
工业在线LIBS激光诱导击穿光谱系统
可根据用户需求和具体使用场景定制。例如:采用多个通道高分辨率光谱仪进行同步采集;采用一体化集成机箱,防尘防震防腐蚀,横跨传送带吊装设计、实时显示设备状态和测量结果;适应不同天气环境温度变化。
审核编辑 黄宇
-
光谱
+关注
关注
4文章
820浏览量
35166 -
激光诱导
+关注
关注
0文章
25浏览量
5585
发布评论请先 登录
相关推荐
评论