0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于无人机多光谱遥感的棉花生长参数和产量估算

莱森光学 来源:莱森光学 作者:莱森光学 2024-08-21 14:29 次阅读

一、引言

无人机低空遥感威廉希尔官方网站 的快速发展为高时间与高空间分辨率的快捷精确地进行野外数据采集提供了前所未有的机遇。

尽管目前已有许多关于棉花SPAD、株高等指标的遥感长势监测研究,但在利用机器学习方法进行棉花长势监测与单株产量估算的研究方面,探索较少。同时,利用无人机多光谱数据预测棉花产量的研究也相对有限。因此,以山东省滨州市棉花为研究对象,应用无人机多光谱遥感威廉希尔官方网站 ,采用多元线性回归、随机森林和人工神经网络三种机器学习方法,构建棉花的株高、叶绿素相对含量和单株产量的估计模型,并进行验证。以探究其在棉花株高和叶绿素含量反演方面的应用潜力,为作物产量的实时预测提供理论依据,并探讨无人机多光谱遥感威廉希尔官方网站 在作物长势监测方面的应用效果。

材料与方法

2.1 研究区概况

本文于2022年7-9月在山东省滨州市秦皇台乡(山东滨州棉花科技小院)进行田间试验,该地北纬37.22°,东经118.02°,海拔约11m,一年只种植一季棉花育种材料。试验田属暖温带大陆性季风气候,半湿润地区,冬季寒冷干燥,夏季炎热多雨。年平均气温约为12.3℃,年降雨量626mm左右,其中夏季降雨量较大,占全年的60%~70%,其他月份降雨较少。试验棉花鲁研棉37于2022年4月28日采用随机区组设计播种。行距0.76m,株距0.16m,种植密度为90000株/hm2。试验田栽培管理措施与一般大田管理措施相同。本试验在试验田内均匀布设3个地面控制点,由红色喷漆作为标志(避免在获取不同时期无人机遥感影像时发生空间位置的移动)。利用智能系统测量控制点的三维空间地理位置,以便进行几何校正和图像配准。试验田长100m,宽30m,平均分为30个小区,每个小区9m×10m,如图1所示。

wKgaombFiU-AQtq7AAFmoa_Hbeg497.png

图1 研究区地理位置及试验小区设置

2.2无人机多光谱图像采集与处理

采用无人机多光谱对测试区域进行多光谱图像采集。在图像拼接过程中,将无人机多光谱图像导入软件,软件能够自动读取相机配置信息和定位系统数据,然后进行辐射校准。最后,生成数字地表模型、数字正射影像,并进行几何校正和图像配准。

wKgZombFiVCAFA6QAABB9JMo8Ao27.jpeg

2.3 无人机多光谱图像的植被指数提取

为筛选出适合棉花无人机遥感估产的植被指数,本文基于无人机多光谱影像红、绿、蓝、红外、近红外波段的光谱信息,从65种植被指数中选取了8种与产量相关性较高的植被指数,计算植被指数的公式如表1所示。采用计算工具提取植被指数。构建感兴趣区域提取每个小区的植被指数,并选择每个小区的平均反射率进行后续的数据处理。

表1植被指数及计算公式

wKgaombFiVGAc9CjAAHDHZhdAag684.png

结果与分析

3.1 叶绿素相对含量、株高、产量

盛花期、成熟期棉花植株株高与叶绿素相对含量的基本信息如表2、表3所示。数据显示不同生长阶段的棉花叶绿素含量、株高存在较小差异,可能是由于盛花期至成熟期间产量已相对稳定,不排除另有其他环境因素的变化,使得观察到的差异较小。图2为测产样点棉花单铃重的频数分布图,曲线为依据样本均值、方差绘制的正态分布曲线。棉花产量实测数据显示,棉花单株产量集中于90~150g。

表2 棉花叶绿素相对含量统计

wKgZombFiVKAedI5AACDBQB2ZNo881.png

表3 棉花株高数据统计

wKgaombFiVKAQy2SAACRXcllln8827.pngwKgZombFiVKARerXAADNIvmHgEU683.png

图2 棉花单株产量分布直方图

3.2植被指数与叶绿素相对含量、株高相关性分析

利用建模数据集中实测的SPAD、株高分别与8种植被指数进行相关性分析,计算结果如表4所示。

表4 植被指数与SPAD、株高相关系数

wKgaombFiVOAP4zsAAC7BqBlmvQ726.png

从表4可以看出,SPAD与8种植被指数的相关系数在0.528~0.792之间,其中SPAD与GDVI相关系数最强,相关系数达到0.792;NDRE与株高之间为负相关关系,其余7种植被指数均与株高呈正相关关系。与棉花株高具有最好的相关性的植被指数为GDVI,相关系数为0.738。因此,选择表4中的8种植被指数对于构建棉花的生长参数及产量的反演模型具有一定可行性。

3.3 棉花各植被指数与产量的相关系数

8种植被指数与产量的相关性分析结果如表5所示,其中GDVI在盛花期与产量相关性最佳,相关系数为0.755;而在成熟期DVI是与产量相关性最佳的植被指数,相关系数为0.718。表5植被指数与产量相关系数

表5 植被指数与产量相关系数

wKgZombFiVOAHM5pAAC8xSt2k44947.png

3.4 棉花无人机多光谱遥感生长参数及估产模型

为提高模型预测精度,本文以8种植被指数作为估算模型的输入,采用多元逐步线性回归法、人工神经网络和随机森林法构建不同生育期棉花叶绿素含量、株高、产量之间的经验统计模型。

如表6所示,可得基于MLR、基于RF和基于BPNN构建的盛花期和成熟期棉花株高估算模型的R2、RMSE和NRMSE;基于MLR、基于RF和基于BPNN构建的盛花期和成熟期棉花SPAD估算模型的R2、RMSE和NRMSE;基于MLR、基于RF和基于BPNN构建的盛花期和成熟期棉花产量估算模型的R2、RMSE和NRMSE。

从表6可以看出,不管是在盛花期还是成熟期,人工神经网络模型的精度均高于其他两种模型方法。

wKgaombFiVOAdbmOAADA7yJX6Uc543.png

表6不同模型方法预测棉花各项指标的模型概况

3.5 基于无人机遥感的棉花生育期植被指数估测产量验证

本文使用BP神经网络模型对8个植被指数和实测数据进行建模,并进行验证。基于田间试验共获取花蕾期和成熟期各150组SPAD和株高样本、150组产量样本,对所有样本进行从小到大排序,在这些样本中随机选取110组样本作为建模集,剩余40组样本作为验证集。以表1中的植被指数作为自变量,以棉花株高作为因变量,采用BPNN构建棉花盛花期、成熟期株高估算模型,从R2、RMSE、NRMSE3个方面综合评定模型精度,不同建模方法对于棉花株高的预测结果如图3所示。

wKgZombFiVSAALoXAAHBzYgK9BM033.png

图3基于人工神经网络的棉花生长参数和产量预测精度验证

结论

本文以山东省滨州市棉花为研究对象,利用无人机获取了棉花不同时期的多光谱影像,并采用多元线性回归、随机森林、人工神经网络三种方法分别构建了棉花的株高、叶绿素相对含量、产量的估计模型。同时还深入探讨了不同机器学习方法对棉花长势参数与产量估算精度的影响,旨在为更加精准、快速地获取棉花生长参数与产量预测提供理论参考。

目前无人机遥感影像与植被指数结合的相关研究在农业领域应用日益广泛。本文通过无人机多光谱遥感威廉希尔官方网站 反演棉花的株高和叶绿素含量,并分析其与产量的关联,从而为作物生长参数的监测和农作物产量的预测提供可靠数据支持。

推荐

便携式高光谱成像系统iSpecHyper-VS1000

专门用于公安刑侦、物证鉴定、医学医疗、精准农业、矿物地质勘探等领域的最新产品,主要优势具有体积小、帧率高、高光谱分辨率高、高像质等性价比特点采用了透射光栅内推扫原理高光谱成像,系统集成高性能数据采集与分析处理系统,高速USB3.0接口传输,全靶面高成像质量光学设计,物镜接口为标准C-Mount,可根据用户需求更换物镜。

wKgaombFiVSAR5c1AAG-q9GWvYo228.png

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 无人机
    +关注

    关注

    230

    文章

    10461

    浏览量

    181001
  • 光谱遥感
    +关注

    关注

    0

    文章

    10

    浏览量

    7102
  • 多光谱
    +关注

    关注

    0

    文章

    23

    浏览量

    6872
收藏 人收藏

    评论

    相关推荐

    无人机遥感传感电路设计与原理分析

    遥感无人机传感器是根据不同类型的遥感任务,使用相应的机载遥感设备,如高分辨率CCD数码相机、轻型光学相机、
    发表于 05-18 09:43 5954次阅读

    无人机遥感威廉希尔官方网站

    优异等特点。数据后期处理无人机遥感系统使用小型数字相机(或扫描仪)作为机载遥感设备,与传统的航片相比,存在像幅较小、影像数量多等问题,针对其遥感
    发表于 03-11 07:59

    无人机遥感威廉希尔官方网站

    、体积孝重量轻、精度高、存储量大、性能优异等特点。遥感数据的后处理威廉希尔官方网站 目前的无人机遥感系统使用小型数字相机(或扫描仪)作为机载遥感设备,与
    发表于 11-01 11:22

    基于局部加权拟合的无人机遥感影像尺度检测

    基于局部加权拟合的无人机遥感影像尺度检测
    发表于 06-23 11:56 28次下载

    无人机光谱相机的应用及优势

    iseild-M600无人机机载光谱相机是莱森光学( lisen Optics )专门用于遥感精准农业、灾害评估救援与重建、林业资源精细调查。ieield-M0
    发表于 08-02 11:28 3986次阅读

    无人机载成像光谱仪的详细介绍

    无人机载成像光谱仪体积小、重量轻,非常适合无人机(UAV)上应用,同时无人机载成像光谱仪又具有高性能的威廉希尔官方网站
    发表于 08-20 11:29 2662次阅读

    无人机遥感威廉希尔官方网站 对高粱生长状态的监测研究

    无人机遥感威廉希尔官方网站 对高粱生长状态的监测研究方面还未有大量研究。本文以南通市农业研究实验基地种植的高粱为研究对象,选取可反应农作物长势的叶面积指数(LAI)、植被覆盖度(FVC)为高粱生长
    的头像 发表于 04-14 10:52 1691次阅读
    <b class='flag-5'>无人机</b><b class='flag-5'>遥感</b>威廉希尔官方网站
对高粱<b class='flag-5'>生长</b>状态的监测研究

    无人机光谱在农田信息监测中的应用

    无人机可搭载的遥感传感器多种多样, 可以获取多维度、高精度的农田信息, 实现类农田信息的动态监测。这些信息主要包括作物空间分布信息(农田定位、作物种类识别、面积估算及变化动态监测、田
    的头像 发表于 04-29 10:26 3184次阅读

    基于光谱信息的棉花水、氮监测模型研究-莱森光学

    引言 棉花是一种重要的经济作物,目前,水肥对棉花生长非常重要,如何快速监测棉花的水肥状况,对于指导农业生产管理工作者调节灌溉量及灌溉周期、调节施肥量、精准化控、精准脱叶都有着重要的意义。而无人
    的头像 发表于 05-11 11:34 615次阅读
    基于<b class='flag-5'>多</b>源<b class='flag-5'>光谱</b>信息的<b class='flag-5'>棉花</b>水、氮监测模型研究-莱森光学

    基于无人机光谱遥感的森林可燃物分类方法研究-莱森光学

    引言 随着遥感理论的发展以及遥感信息提取威廉希尔官方网站 的不断提高,利用卫片、航片等光谱遥感数据获取的信息更加丰富、精确和清晰,利用
    的头像 发表于 06-02 11:42 843次阅读
    基于<b class='flag-5'>无人机</b>高<b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>的森林可燃物分类方法研究-莱森光学

    农业科研:无人机遥感饲草作物生长监测研究进展

    研究中心、沧州市农林科学院等科研院所,组成研究团队。充分利用无人机遥感分辨率高、灵活性强、成本低等特性,应用场景不断拓展。 为了掌握无人机在饲草监测的国内外应用现状,确定重点发展方向。 一、
    的头像 发表于 11-14 16:29 715次阅读

    无人机光谱相机有什么用

    无人机光谱相机是一种搭载在无人机上,能够同时捕捉多个波长光谱的高分辨率图像的威廉希尔官方网站 。这种相机具有许多应用领域,包括农业、环境监测、城市规划和
    的头像 发表于 01-11 11:22 2660次阅读

    无人机光谱成像在甘蔗长势分析和产量预测的应用

    威廉希尔官方网站 具有宏观、快速、重访周期短等特点,在甘蔗面积识别、长势监测、产量估算、旱灾分析、冻害监测等方面得到有效应用,但仍无法满足甘蔗产业的高精准监测需求。无人机遥感威廉希尔官方网站 具有灵活、准确的特性
    的头像 发表于 04-24 11:35 609次阅读
    <b class='flag-5'>无人机</b>高<b class='flag-5'>光谱</b>成像在甘蔗长势分析和<b class='flag-5'>产量</b>预测的应用

    基于无人机光谱遥感的典型草原打草对植被表型差异分析

    利用无人机光谱遥感数据结合实测数据,分析植被光谱反射率和窄波段植被指数等表型参数对打草行为的敏感性,通过获取特征波段和植被指数,揭示打草前
    的头像 发表于 06-14 10:38 374次阅读
    基于<b class='flag-5'>无人机</b>高<b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>的典型草原打草对植被表型差异分析

    基于无人机遥感的作物长势监测研究进展

    无人机遥感威廉希尔官方网站 通过对作物生长过程中的环境因素、物理指标和生化参数等进行实时或定期监测,来评估和预测作物的生长情况和生产潜力,指导农业生产和管
    的头像 发表于 07-12 14:14 748次阅读
    基于<b class='flag-5'>无人机</b><b class='flag-5'>遥感</b>的作物长势监测研究进展