深度学习模型量化概述
深度学习模型量化是一种重要的模型轻量化威廉希尔官方网站 ,旨在通过减少网络参数的比特宽度来减小模型大小和加速推理过程,同时尽量保持模型性能。从而达到把模型部署到边缘或者低算力设备上,实现降本增效的目标。
01定义
模型量化是指将神经网络的浮点算法转换为定点算法,通常涉及将浮点数参数转换为低位数的整数,例如从32位浮点数(FP32)到8位整数(INT8)。这一威廉希尔官方网站 通过减少模型中参数的位数来降低模型的存储需求和计算复杂性。
02主要类型
静态量化:
在模型训练后进行,不涉及重新训练。它通常用于不需要细粒度调优的场景。
动态量化:
在模型推理时进行,对权重进行量化,但保留中间激活的浮点数表示。它适用于那些需要保持较高推理精度的应用。
量化感知训练QAT
QAT - Quantization Aware Training, 在训练过程中将量化考虑在内,通过interwetten与威廉的赔率体系 低精度的效果来训练模型。这种方法可以最大限度地减少量化对模型精度的影响。
03量化方法
均匀量化:
所有权重与激活值被量化到均匀间隔的离散值上。这简化了量化的实现,是一种普遍使用的量化方法。
非均匀量化:
考量到分布的不均匀性,通过对数或其他方式量化,目的是最小化量化前后的信号失真。
对称与非对称量化:
对称量化在正负数值上使用相同的量化间隔,非对称量化则允许正负数值有不同的量化间隔。
常用量化框架
当前工业界常用的主流量化工具与框架主要有以下三种!
01PyTorch(torch.quantization)
支持训练后量化。PyTorch的量化支持主要包括三种方式:训练后动态量化(Post Training Dynamic Quantization)、训练后静态量化(Post Training Static Quantization)以及量化感知训练(Quantization Aware Training, QAT)。
训练后量化
1. 训练后动态量化
概述:训练后动态量化是指在模型训练完成后,仅对模型的权重进行量化,而激活(activations)在推理过程中进行量化。这种方式适用于那些对精度要求不是特别高,但需要快速部署的场景。
特点:
简单易用:不需要重新训练模型,只需要对训练好的模型进行量化。 性能提升:与浮点数模型相比,量化后的模型在推理速度上会有显著提升,同时模型大小也会减小。 示例代码:
import torch from torch import nn from torch.quantization import quantize_dynamic class DemoModel(nn.Module): def __init__(self): super(DemoModel, self).__init__() self.conv = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=1) self.relu = nn.ReLU() self.fc = nn.Linear(2, 2) def forward(self, x): x = self.conv(x) x = self.relu(x) x = self.fc(x) return x model_fp32 = DemoModel() model_int8 = quantize_dynamic( model=model_fp32, qconfig_spec={nn.Linear}, # 仅对Linear层进行量化 dtype=torch.qint8 )
2. 训练后静态量化
概述:训练后静态量化是指对模型训练完成后,不仅对权重进行量化,还对激活进行量化。这种方式需要收集一些代表性的数据来标定(calibrate)量化参数,以确保量化后的模型精度尽可能接近原始模型。由于同时量化了权重和激活,因此量化后的模型精度通常比动态量化更高。需要收集代表性的数据来标定量化参数。
示例流程:
1. 准备标定数据集。
2. 加载并准备模型(设置eval模式,并附加量化配置)。
3. 使用标定数据集对模型进行标定,以收集权重和激活的分布信息。
4. 将标定后的模型转换为量化模型。
量化感知训练(QAT)
虽然QAT不属于训练后量化的范畴,但它是另一种重要的量化方式,值得提及。QAT是在模型训练过程中插入伪量化模块,模拟量化效应,从而提高模型对量化操作的适应能力。这种方式可以在一定程度上弥补静态量化在精度上的损失。
02OpenVINO NCCF
OpenVINO NCCF(Neural Network Compression Framework)量化框架是OpenVINO工具套件中的一个重要组成部分,旨在帮助开发者通过量化威廉希尔官方网站 优化深度学习模型的性能。OpenVINO NCCF是一个用于深度学习模型压缩的框架,它提供了多种压缩算法,包括量化、剪枝、蒸馏等,以帮助开发者减小模型大小、提高推理速度和降低功耗。量化作为其中的一种重要威廉希尔官方网站 ,通过将模型中的浮点数参数转换为整数,实现了模型的压缩和加速。
OpenVINO NCCF量化流程
OpenVINO NCCF量化流程通常包括以下几个步骤:
模型准备:
首先,需要有一个训练好的深度学习模型,该模型可以是PyTorch、TensorFlow等框架下的模型。
模型转换:
将训练好的模型转换为OpenVINO的中间表示(IR)格式。这一步是可选的,但转换为IR格式可以更好地利用OpenVINO的优化功能。
量化配置:
配置量化参数,包括量化精度(如INT8、FP16等)、量化策略(如对称量化、非对称量化等)以及量化目标设备(如CPU、GPU等)。
量化执行:
使用OpenVINO NCCF提供的量化工具或API对模型进行量化。这一步通常包括前向传播以收集统计信息、计算量化参数以及应用量化参数到模型权重和激活中。
模型评估:
对量化后的模型进行评估,以验证量化对模型精度的影响。如果精度损失在可接受范围内,则可以继续使用量化后的模型;否则,需要调整量化参数并重新执行量化。
模型部署:
将量化后的模型部署到目标设备上,进行实际的推理任务。
OpenVINO NCCF量化优势
高精度保持:
OpenVINO NCCF提供了多种量化策略和算法,可以帮助开发者在保持模型精度的同时实现显著的压缩和加速。
多硬件支持:
OpenVINO NCCF支持多种硬件平台,包括Intel CPU、GPU、FPGA等,使得量化后的模型可以在不同的硬件上实现高效的推理。
易用性:
OpenVINO NCCF提供了丰富的API和工具,使得开发者可以轻松地集成和使用量化功能,无需深入了解底层的量化算法和优化威廉希尔官方网站 。
ResNet18的图像分类模型FP32与INT8量化版本推理速度比较:
在OpenVINO的官方文档和社区中,可以找到关于NCCF量化的详细示例和教程。这些示例通常包括模型准备、转换、量化、评估和部署等整个流程,为开发者提供了宝贵的参考和指导。
03TensorRT量化框架
TensorRT量化是深度学习模型优化的一种重要手段,它通过将模型中的参数(如权重)从浮点数(如FP32)转换为整数(如INT8)来减少模型的存储和计算成本,从而达到模型压缩和运算加速的目的。
TensorRT量化的基本概念
NVIDIA的TensorRT是一个高性能的深度学习推理优化器,它支持多种深度学习框架(如TensorFlow、PyTorch等)的模型,并提供了一系列的优化威廉希尔官方网站 ,包括量化、层融合、动态张量等,以加速深度学习模型的推理速度。
TensorRT量化的目标 减少模型大小:
通过量化,可以将模型的参数从浮点数转换为整数,从而显著减少模型的存储需求。
加速推理速度:
在支持INT8等低精度整数运算的硬件上,使用量化后的模型可以显著提高推理速度。
降低功耗:
在一些嵌入式或移动设备上,使用量化后的模型可以降低功耗,延长设备的使用时间。
TensorRT量化的实现方式
TensorRT支持多种量化方式,主要包括隐式量化和显式量化两种:
隐式量化:
在TensorRT的早期版本中,隐式量化是主要的量化方式。它不需要修改模型结构或训练代码,只需要在模型推理过程中使用TensorRT提供的量化工具进行量化。隐式量化通常适用于训练后量化(PTQ)场景。
显式量化:
从TensorRT 8.0版本开始,显式量化得到了全面支持。显式量化允许在模型训练过程中插入量化指令(如QDQ操作),并在模型推理过程中使用TensorRT进行量化。显式量化可以提供更高的量化精度和更好的性能优化。
TensorRT量化的校准方法
在TensorRT中,量化过程中需要使用校准数据集来确定量化参数(如缩放因子和零点)。TensorRT支持多种校准方法,包括熵校准和最小最大值校准等:
熵校准:
熵校准是一种动态校准算法,它使用KL散度(KL Divergence)来度量推理数据和校准数据之间的分布差异。在校准过程中,TensorRT会分析每个张量的分布,并选择合适的量化参数以最小化KL散度。
最小最大值校准:
最小最大值校准使用最小最大值算法来计算量化参数。在校准过程中,TensorRT会统计校准数据中的最小值和最大值,并根据这些值来计算量化参数。
-
模型
+关注
关注
1文章
3229浏览量
48811 -
深度学习
+关注
关注
73文章
5500浏览量
121117 -
pytorch
+关注
关注
2文章
808浏览量
13202
原文标题:深度学习模型量化方法与框架介绍
文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论