0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

厘米级微型拉曼光谱仪

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-07-09 06:26 次阅读

wKgaomaMZ3yAB_n1AANRaM45A70669.jpg

光学布局和工作原理如下图所示:

拉曼光谱提供了一种微尺度下对化学成分的无损、无标记定量研究手段。现有的拉曼光谱仪微型化策略主要存在以下问题:光谱分辨率及光谱范围不足、高水平传感器暗噪声导致的信噪比(SNR)受限、传感器像素间的量子效率(QE)变化较大、共焦性或深度分层差、激光波长和激光器光功率不稳定、激光光学反馈灵敏度高以及功耗高。

近日,丹麦威廉希尔官方网站 大学的科研团队提出了一种厘米级微型拉曼光谱仪,采用了经济型非稳定激光二极管、密集光学元件和非制冷小型传感器。其性能可与昂贵、体积庞大的科研级拉曼系统相媲美。该微型拉曼光谱仪具有出色的灵敏度、低功耗、完美的波数以及强度校准,并在400 ~ 4000 cm⁻¹范围内利用内置参考基准实现了7 cm⁻¹的分辨率。该微型拉曼光谱仪的高性能和通用性在应用实例中得到了证明,应用实例包括饮品中甲醇的定量测定、人体皮肤的活体拉曼测量、发酵监测、亚微米分辨率的化学拉曼映射、抗癌药物甲氨蝶呤(MTX)的定量表面增强拉曼光谱(SERS)映射以及体外细菌鉴定等。可以预见,这种微型化策略有望使超紧凑型拉曼光谱仪集成到智能手机和医疗设备中,从而推动拉曼威廉希尔官方网站 的普及。

下图为微型拉曼系统的灵敏度和量化性能演示:

wKgZomaMZ3yALMiIAAF45kYhpBQ434.jpg


审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 二极管
    +关注

    关注

    147

    文章

    9631

    浏览量

    166335
  • 激光
    +关注

    关注

    19

    文章

    3188

    浏览量

    64454
  • 光谱仪
    +关注

    关注

    2

    文章

    964

    浏览量

    30764
收藏 人收藏

    评论

    相关推荐

    高压放大器在气体光谱检测威廉希尔官方网站 研究中的应用

    作为气体池,通过光谱仪狭缝导入气体的光谱信号,设置计算机端软件参数,控制光谱仪与CCD相机对信号进行实时观测采集。本章介绍基于V型三镜腔
    的头像 发表于 12-12 10:57 99次阅读
    高压放大器在气体<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测威廉希尔官方网站
研究中的应用

    什么是光纤光谱仪?光纤光谱仪的应用

    在现代科学威廉希尔官方网站 的众多领域中,光纤光谱仪以其独特的性能和广泛的应用成为了不可或缺的工具。那么,究竟什么是光纤光谱仪?它又有哪些令人瞩目的应用呢?让我们一起来深入了解。 一、光纤光谱仪简介 光纤
    的头像 发表于 10-25 17:21 348次阅读
    什么是光纤<b class='flag-5'>光谱仪</b>?光纤<b class='flag-5'>光谱仪</b>的应用

    工业微型光谱仪在水质吸收测量中的应用

    在水质监测领域,准确测量水质参数对于环境保护、水资源管理以及人类健康至关重要。工业微型光谱仪作为一种先进的检测工具,在水质吸收测量等方面发挥着重要作用。 一、什么是工业微型光谱仪? 工
    的头像 发表于 09-25 17:27 210次阅读
    工业<b class='flag-5'>微型</b><b class='flag-5'>光谱仪</b>在水质吸收测量中的应用

    工业微型光谱仪有哪些特点?

    在现代工业和科研领域中,工业微型光谱仪正发挥着越来越重要的作用。它以其独特的性能特点,为各个行业的检测和分析提供了强大的工具。今天,就让我们一起来深入了解工业微型光谱仪的性能特点。 一
    的头像 发表于 09-23 17:26 219次阅读
    工业<b class='flag-5'>微型</b><b class='flag-5'>光谱仪</b>有哪些特点?

    光谱的原理及其应用

    一、光谱的原理 光谱(Raman spectra)是一种散射
    的头像 发表于 08-26 06:22 329次阅读

    精准捕捉信号——时间门控光谱系统实验结果深度解析

    得的实验结果,展示其在实际应用中的出色表现。 01、系统简介 如上次所述,时间门控光谱系统通过使用Princeton IsoPlane零像散光栅光谱仪,配合逐光IsCMOS时间分辨
    的头像 发表于 08-13 10:38 367次阅读
    精准捕捉<b class='flag-5'>拉</b><b class='flag-5'>曼</b>信号——时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>系统实验结果深度解析

    普林斯顿PI推出光谱仪,在近红外领域具有突破性的高灵敏度性能

    新的TPIR-785光谱仪,这是一个完全集成的系统,利用先进的光谱仪和相机威廉希尔官方网站 ,优化近红外(NIR)地区的性能。TPIR-785是一款超高灵敏度的
    的头像 发表于 07-15 06:25 322次阅读

    光谱仪原理及应用

    一、光谱仪的原理 光谱仪的原理是基于印度科学家C.V.
    的头像 发表于 07-01 06:28 646次阅读

    美能晶化率测试光谱成像威廉希尔官方网站 在HJT工艺中的应用与优化

    光谱成像主要用于获取物质的化学信息及其空间分布。美能晶化率测试通过高光谱分辨率和低杂散光光谱仪
    的头像 发表于 06-29 08:33 334次阅读
    美能晶化率测试<b class='flag-5'>仪</b>:<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>成像威廉希尔官方网站
在HJT工艺中的应用与优化

    TPIR 785 高通量高灵敏度光谱仪

    TPIR-785是为近红外研究而优化的高通量系统。TPIR-785具有较宽的近红外光谱范围和高光谱分辨率,是生物研究的理想选择。 TPIR-785主要产品特性: 80-3650 c
    的头像 发表于 06-26 13:44 299次阅读
    TPIR 785 高通量高灵敏度<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱仪</b>

    探索光谱的奇妙世界:从原理到应用

    光谱仪的鲁棒性和多功能性使得分析成为非常有前景的解决方案,可以对各种材料进行原位分析。 小编找到了一篇关于
    的头像 发表于 06-12 17:08 540次阅读
    探索<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的奇妙世界:从原理到应用

    南方科技大学成功研制室温片上微型红外光谱仪

    红外光谱仪在工业和实验室中有着重要的应用价值。然而,传统红外光谱仪(如光栅分光式、傅里叶变换式红外光谱仪)体积庞大、造价高昂且需要液氮制冷,这极大地限制了红外光谱仪在便携式设备上等更广
    的头像 发表于 05-10 09:08 627次阅读
    南方科技大学成功研制室温片上<b class='flag-5'>微型</b>红外<b class='flag-5'>光谱仪</b>

    光谱仪的光学微型化方案研究

    光谱学(Raman spectroscopy)提供了一种微尺度下对化学成分的无损、无标记定量研究手段。
    的头像 发表于 04-20 09:06 804次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱仪</b>的光学<b class='flag-5'>微型</b>化方案研究

    一种用于化学和生物材料识别的便携式光谱解决方案

    基于扫频光源的紧凑型光谱系统:美国麻省理工学院(MIT)和韩国科学威廉希尔官方网站 院(KAIST)的研究人员开发了一种用于化学和生物材料识别的便携式
    的头像 发表于 04-16 10:35 525次阅读
    一种用于化学和生物材料识别的便携式<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>解决方案

    先进的光谱威廉希尔官方网站

    图1:药物乳液的共焦图像。油(绿色)、活性药物成分(蓝色)和硅杂质(红色)的化学分布如图所示 由于正常散射产生的信号非常小,研究人员发现了几种机制,通过提高
    的头像 发表于 01-15 06:35 352次阅读
    先进的<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>威廉希尔官方网站