支持 NVIDIA NIM 推理微服务的谷歌最新开源模型 PaliGemma 首次亮相。
驱动生成式 AI 的大语言模型创新前赴后继,处理文本、图像和声音等多种类型数据的模型正变得日益普遍。
然而,构建和部署这些模型仍具有挑战性。开发者需要一种方法来快速体验和评估模型,在确定最适合其用例的模型后,再以一种经济高效并能带来最佳性能的方式来优化模型性能。
为了让开发者更加轻松地创建具有世界一流性能的 AI 应用,NVIDIA 和谷歌在 2024 谷歌 I/O 开发者大会上宣布了三项新的合作。
Gemma + NIM
借助TensorRT-LLM,NVIDIA 正在与谷歌一同优化在此次大会上推出的两个新模型:Gemma 2 和 PaliGemma。这两个模型由与构建 Gemini 模型相同的研究和威廉希尔官方网站 构建而成,每个模型都专注于一个特定领域:
Gemma 2是具有广泛用途的新一代 Gemma 模型,借助全新的架构来实现突破性的性能和效率。
PaliGemma是受 PaLI-3 启发的开源视觉语言模型(VLM)。PaliGemma 基于 SigLIP 视觉模型和 Gemma 语言模型等开放组件构建而成,专门用于视觉语言任务,例如图像和短视频字幕、视觉问题解答、图像文本理解、对象检测和对象分割等。PaliGemma 在各种视觉语言任务中具有领先于同类模型的微调性能,并且还得到NVIDIA JAX-Toolbox的支持。
Gemma 2 和 PaliGemma 将与NVIDIA AI Enterprise软件平台中的NVIDIA NIM推理微服务一起提供,可简化 AI 模型的大规模部署。从今天开始,PaliGemma 的 API 目录可提供对这两个新模型的 NIM 支持,两个新模型也将很快在NVIDIA NGC和 GitHub 上以容器的形式发布。
将加速数据分析引入 Colab
谷歌还宣布开源 GPU 数据框架库 RAPIDS cuDF 将默认支持谷歌 Colab,这是最受数据科学家欢迎的开发者平台之一。现在,谷歌 Colab 的 1000 万月度用户只需几秒钟,就能使用NVIDIATensor Core GPU将基于 pandas 的 Python 工作流加速高达 50 倍,而且无需修改代码。
借助 RAPIDS cuDF,使用谷歌 Colab 的开发者可以加快探索性分析和生产数据管道的速度。虽然 pandas 因其直观的 API 而成为全球最流行的数据处理工具之一,但随着数据规模的增长,应用程序往往会捉襟见肘。即便数据只有 5-10 GB ,许多简单的操作在 CPU 上也需要数分钟才能完成,从而降低了探索性分析和生产数据管道的速度。
RAPIDS cuDF 旨在通过在适用的 GPU 上无缝加速 pandas 代码来解决这个问题,而在不适用的 GPU 上则退回到 CPU-pandas。由于 Colab 默认使用 RAPIDS cuDF,世界各地的开发者都能用上加速数据分析。
随时随地使用 AI
谷歌和 NVIDIA 还宣布借助搭载NVIDIA RTX显卡的 AI PC 来开展一项 Firebase Genkit 的合作,使应用开发者能够轻松地将生成式 AI 模型(例如新的 Gemma 模型系列)集成到他们的网络和移动应用中,以便提供自定义内容、进行语义搜索和回答问题。开发者可以先使用本地 RTX GPU 启动工作流,然后将工作无缝迁移到谷歌云基础设施。
更加方便的是,开发者可以通过 Genkit 使用 JavaScript(一种移动开发者在构建应用时常用的编程语言)来构建应用。
创新无止境
NVIDIA 和谷歌云正在多个领域开展合作,共同推进 AI 的发展。无论是即将推出的 Grace Blackwell 架构 DGX Cloud 平台和 JAX 框架支持,还是将NVIDIA NeMo框架引入 Google Kubernetes Engine,两家公司的全栈合作为客户在谷歌云上借助 NVIDIA 威廉希尔官方网站 使用 AI 带来了更多可能性。
-
NVIDIA
+关注
关注
14文章
4983浏览量
103012 -
gpu
+关注
关注
28文章
4733浏览量
128911 -
大模型
+关注
关注
2文章
2436浏览量
2665 -
生成式AI
+关注
关注
0文章
502浏览量
471
原文标题:Gemma + NIM:NVIDIA 与 Google DeepMind 合作推动大语言模型创新
文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论