钙钛矿太阳能电池是以钙钛矿型晶体为主要吸光材料的太阳能电池,具有高光电转换效率、结构简单、制备工艺多样化、成本低等优点。目前,单结钙钛矿太阳能电池的理论转换效率可达33%,而现在受到市场广泛关注的钙钛矿/硅串联太阳能的理论转化效率可达43%,且具有突破单结太阳能电池Shockley-Queisser极限的潜力。然而,内部界面的反射损耗对串联电池的整体效率起着至关重要的作用。来自美能的RTIS绒面反射仪,可以测试制绒片对不同波长段的光反射率强度,并进行多点自动测量,最终以可视化曲线呈现测试结果,帮助客户监控电池片反射率、膜厚信息。
反射损失的研究
太阳能电池光学损失主要包括反射损失和寄生吸收等两方面。减少电池中的反射损失途径主要包括两方面,一是在太阳能电池前表面设计一层减反射层,增加前表面抗反射能力。二是使用绒度衬底,将进入太阳能电池的光吸收最大化。两者都能有效的提高光吸收。
寄生吸收首先,我们简单介绍下寄生吸收。太阳能电池中非活性层的吸收称为寄生吸收,这些吸收对太阳电池中的短路电流密度没有贡献,所以对寄生吸收的改善在光学优化中很重要。在非吸收层中,造成寄生吸收的主要原因是透明导电层对光的吸收。透明导电层主要有石墨烯、银纳米线电极、MoOx作为缓冲层的薄金属层、掺锌的氧化铟(indium zinc oxide,IZO)或者ITO等,每种材料都有其优缺点。
分析太阳能电池的光损耗,能直接看出所有材料的寄生吸收,从而针对性发对寄生吸收大的材料进行厚度、材料、带隙等方面的优化。不同结构的太阳能电池引起主要寄生吸收的材料不同,优化方式也随之改变。寄生吸收的优化对叠层电池光学优化有着十分重要的影响。
反射损失在钙钛矿/硅叠层太阳能电池中,反射损耗占光学损耗的很大一部分,而减反射层的设计可以降低光反射,增加光吸收。减反层通常使用的材料有LiF和MgF2材料,或LM箔和PDMS等反射层结构。
2017年,美国亚利桑那州立大学Manzoor等人,将带有无规则金字塔的PDMS聚合物制成的涂层,使用在具有平面前后表面制绒的硅电池片上,分别获得了3.0和1.7mA/cm2的短路电流密度提升,并且将此涂层运用到钙钛矿太阳能电池上。PDMS层由于较小的折射率,能够降低太阳能电池正面反射率和调整叠层电池的电流失配问题。
有、无PDMS减反层的太阳能电池EQE对比
2018年,德国亥姆霍兹研究所在叠层电池的正面采用了制绒的LM箔,叠层器件效率从23.4%提升至25.5%。
LM箔作减反层的优化结果对比不过由于PDMS和LM箔是一种聚合物,光学性质的interwetten与威廉的赔率体系 工作复杂,所以很多工作中减反层用的都是MgF2和LiF,并且MgF2和LiF的吸收较低,工艺上能做到厚度更薄,对于入射光的减反射效果较好。
德国亥姆霍兹研究所在2019年把LiF应用在叠层电池中,同时对钙钛矿厚度进行优化,最后获得了26%的转换效率和1.4mA/cm2的短路电流密度提升。同年,德国弗劳恩霍夫太阳能系统研究所也使用了另一种减反射材料MgF2,光学性能得到大大改善。
LiF(左)、MgF2(右)作减反层的电池优化结果对比
衬底陷光结构在钙钛矿/硅叠层太阳能电池中,衬底陷光结构能使入射光在太阳能电池内部进行多次反射,充分吸收光从而减少反射损失。通过制绒可以使衬底表面织构化,形成类金字塔的陷光结构,这样的陷光结构对红外光子的吸收增加,产生更多的光生载流子,电池整体的电流和效率也随之提高。因此对衬底陷光结构的优化也非常重要,有效的陷光结构设计能大幅度提升电池性能。
未使用(左)、使用(右)陷光结构的电池EQE图
没有衬底陷光结构的太阳能电池,即平面硅表面上沉积钙钛矿顶电池的叠层电池的反射损失很严重。双面制绒的硅作为底电池的叠层电池光学性能最优。
具有单面制绒、双面制绒的太阳能电池的光损耗对比图
-
太阳能电池
+关注
关注
22文章
1177浏览量
69345 -
测试
+关注
关注
8文章
5281浏览量
126604
发布评论请先 登录
相关推荐
评论