0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PCB 中的电源平面谐振分析

深圳(耀创)电子科技有限公司 2024-02-24 08:11 次阅读

在两个导电平面之间传播的电磁波会激发平行板波导谐振。

PCB电源分配网络 (PDN) 中,平行平面结构内部会激发谐振,从而导致电路板边缘出现强辐射。

这些谐振通常在 GHz 范围内,在 PCB 中的 PDN 阻抗谱或带有近场探头的示波器上会有所显示。

我们习惯从电路图和等效电路的角度来分析电子系统,但这种思路最终会遇到阻碍,我们必须考虑到实际电子系统的高频特性。在实际的 PCB 中,电信号的传播特性将在系统行为中发挥主导作用,其中包括像直流电源分配这种简单的现象。直流电并非真正的直流电,会在 PCB 中激发强烈的谐振,由集成电路引入电路板的直流电更是如此。

407fe64c-d2a9-11ee-9118-92fbcf53809c.jpg

每块高速 PCB 都有电源平面和接地平面,电磁波传播会激发平面谐振。

PCB 中的电源平面和接地平面布置是整个电路板电源分配的基础,它们需要为器件提供稳定的电源。实际上,任何电路板都会产生重要的瞬态效应,而电路板中的平面层结构作用很大,可以决定极高频率下的辐射频谱。这就是电源平面谐振分析的用武之地,该分析有助于了解 PDN 电路描述的局限性,也能帮助我们判断在何时需要从波导行为的角度考虑平面布置。

1

电源平面谐振分析

观察一下 PCB 中 PDN 的阻抗图就会发现,在高频时会出现一些谐振行为。根据电路板的结构和尺寸,这些频率一般在 GHz 范围内,或者更高。当 PCB 中的电源平面和接地平面重叠时,它们所形成的结构会构成一个半开放的平行板波导,该波导具有一些明显的谐振。下图的示例展示了在 PCB 上测得的 PDN 阻抗谱,其中包括在高频下可以看到的谐振。

4095bbe8-d2a9-11ee-9118-92fbcf53809c.png

在 PDN 输入端测得的 PDN 阻抗谱示例,500 MHz 以上可见平面谐振。

PCB 中所有的实际电源平面布置都有一些谐振,这些谐振可通过结构中的电磁波传播辐射而激发。PDN 中所有的谐振都可以通过考虑系统结构来计算,系统结构看起来与平行板波导非常相似。虽然我们可能会认为 PDN 的行为与平行板波导完全相同,但实际上我们得出的只是一个近似值;在 PCB 平面之间穿过该区域的所有其他导体都会改变谐振频率,使其与平行板波导的计算值不同。此外,PDN 的有限跨度将决定结构中的谐振,从而将平行板波导谐振更改为空腔谐振。

对于尺寸为 a 和 b 的电路板,电源平面和接地平面之间的间距为 h,则谐振频率为:

409ab940-d2a9-11ee-9118-92fbcf53809c.png

一般空腔谐振器的谐振频率,假设谐振器为矩形结构。

虽然上述公式并非普遍适用于每种 PDN 结构,但它为我们提供了最低阶 PDN 谐振的近似值。最低阶 PDN 阻抗的典型值从 100 MHz 到 1 GHz 以上不等,具体取决于电路板的尺寸和结构中平面之间的间距。

芯片也有自己的 PDN,因此按照逻辑推理,它也会表现出一些谐振,可能会被电路板电源轨上传入的瞬态振荡所激发。然而,由于芯片及其 PDN 的几何形状,情况并非如此(极高频率下除外)。

2

从电路板过渡到芯片

当电源的入射波撞击到芯片上之后,芯片电源轨上测得的电压将与电路板电源轨上测得的电压大不相同。集成电路的电源轨与裸片上的接地平面之间的间距要小得多,因此电源平面谐振的频率要高得多。

下图是以三种不同方式测量 PDN 阻抗的仿真示例。蓝色曲线显示的是 CMOS 集成电路在芯片主电源轨上测量的典型 PDN 阻抗曲线。这是直接在裸片上测量的曲线类型,经过了任何无源调节部分;请注意,其中不包括因键合线或引线框架而产生的引脚封装电感。将该曲线与电路板阻抗平行对比,假定电路板阻抗为强去耦,在 10 kHz 以上具有相对平坦的阻抗。红色曲线表示这两个阻抗的平行等效值。

40a1c2c6-d2a9-11ee-9118-92fbcf53809c.png

芯片 + 电路板封装的总阻抗(红色曲线)。请注意,裸片上看不到高阻抗谐振。

在此示例中,总阻抗在约 100 MHz 处出现反谐振,但相对较弱,只有 1 欧姆左右。曲线的其余部分非常平坦,在低频时与电路板的低阻抗部分重叠,在高频时与芯片的 PDN 阻抗重叠。芯片 PDN 也存在高阻抗谐振/反谐振对,但频率很高,在上述窗格中看不到。PDN 上芯片电容的存在也有助于使芯片上测得的总阻抗保持在较低水平。

举个简单的例子,我们可以比较电路板和芯片最低阶波导模式的阻抗。在上述示例中,电路板的最低阶谐振仅为 2 GHz;如果我们假设裸片上的电源轨到接地平面的距离仅比芯片尺寸约为 1 cm2 的 PCB 上的距离小 10 倍,那么芯片 PDN 中的最低阶谐振将超过 20 GHz。不应使用电路模型来计算集成电路或电路板 PDN 这类复杂结构中的确切谐振频率。此类谐振最好使用场求解器应用来确定,该应用可直接从物理 layout 中提取数据。

Cadence 的 PCB 设计和分析软件可用于对电路板和电路行为进行仿真,将其作为电源平面谐振分析的一部分。然后,我们可以在任何建模应用中使用自己的数据来计算互谱密度和分析信号行为。

Cadence 的新一代 Sigrity X 解决方案重新定义了 SI 和 PI 分析,将性能提高了 10 倍,同时保持了 Sigrity工具一贯的准确性。Sigrity X 工具套件解决了当今 5G 通信、汽车、超大规模计算以及航空航天和国防工业领域前沿威廉希尔官方网站 专家所面临的系统级仿真的规模和可扩展性挑战。它配备了强大的系统级分析仿真引擎,旗舰产品 Clarity 3D Solver 更采用了创新的大规模分布式架构。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    184

    文章

    17710

    浏览量

    250021
  • pcb
    pcb
    +关注

    关注

    4319

    文章

    23084

    浏览量

    397628
  • 电子系统
    +关注

    关注

    0

    文章

    412

    浏览量

    31149
收藏 人收藏

    评论

    相关推荐

    KiCad如何分割电源平面

    “  与其它EDA不同,KiCad的信号层并没有正片、负片之分。所有的电源平面必须以敷铜的方式实现。 如需了解更多关于KiCad的资讯,请参考: KiCad常用资源  ” 信号层与电源
    的头像 发表于 11-12 12:21 202次阅读
    KiCad<b class='flag-5'>中</b>如何分割<b class='flag-5'>电源</b><b class='flag-5'>平面</b>

    LLC谐振变换器仿真建模与控制策略分析

    。上期内容我们对LLC谐振变换器的电路结构与工作原理进行了分析,了解到变换器最为常用的调制方式为脉冲频率调制(PFM)。今天继续为大家分享LLC谐振变换器的仿真建模
    的头像 发表于 07-19 08:23 1377次阅读
    LLC<b class='flag-5'>谐振</b>变换器仿真建模与控制策略<b class='flag-5'>分析</b>

    pcb电源布线规则分享 PCB电源布线的六大技巧

    PCB设计电源路径的选择非常重要。应尽量缩短电源路径,减少电源线的电阻,降低电源损耗。同
    发表于 05-16 11:50 1942次阅读

    平面变压器的PCB绕组结构设计

    平面变压器的绕组是利用PCB上的螺旋形走线来实现的。PCB板中间被挖空用于安装磁芯。PCB板各层之间由板材绝缘。
    的头像 发表于 04-10 15:57 2405次阅读
    <b class='flag-5'>平面</b>变压器的<b class='flag-5'>PCB</b>绕组结构设计

    电路PCB的地平面设计对EMI的影响

    在电路PCB设计,地平面设计是一个重要的组成部分,PCB平面的设计不仅关乎到电子产品的工作性能,而且对于EMC方面的影响也是息息相关。
    的头像 发表于 03-19 14:12 2932次阅读
    电路<b class='flag-5'>PCB</b>的地<b class='flag-5'>平面</b>设计对EMI的影响

    DC电源模块的 PCB设计和布局指南

    合适的PCB尺寸和层数:根据电源模块的尺寸和功能需求,选择合适的PCB尺寸和层数。注意保持足够的空间来布置元件和散热器。 DC电源模块的 PCB
    的头像 发表于 03-05 14:30 1271次阅读
    DC<b class='flag-5'>电源</b>模块的 <b class='flag-5'>PCB</b>设计和布局指南

    LC串联谐振拓扑仿真建模及控制策略分析

    拓扑是直流高压电源中最为常用的拓扑结构。上一期内容我们对LC串联谐振变换器的工作原理进行了分析,今天继续为大家分享LC串联谐振变换器的仿真
    的头像 发表于 02-24 08:21 1507次阅读
    LC串联<b class='flag-5'>谐振</b>拓扑仿真建模及控制策略<b class='flag-5'>分析</b>

    电源完整性设计的重要三步!

    在现代电子设计电源完整性是PCB设计不可或缺的一部分。为了确保电子设备有稳定性能,从电源的源头到接收端,我们都必须全面考虑和设计。如电源
    发表于 02-21 21:37

    开关电源的SCR谐振器原理

    开关电源设计的在各种各样的SCR谐振电路,半桥全桥,串联谐振并联谐振,其输出端的电压幅值频率和开关管的开通关断频率有什么关系,能用具体数学
    发表于 02-10 18:01

    lc串联谐振怎么分析

    和电容串联连接起来。 要分析LC串联谐振,我们需要从以下几个方面进行详细探讨:回路的基本原理、谐振频率计算、振幅和相位的变化、能量存储和能量损耗等。 首先,简要介绍LC谐振回路的基本原
    的头像 发表于 01-15 10:38 2089次阅读

    PCB设计过程电源平面的处理

    电源线宽或铜皮的宽度是否足够。要考虑电源线宽,首先要了解电源信号处理所在层的铜厚是多少,常规工艺下PCB外层(TOP/BOTTOM层)铜厚是1OZ(35um),内层铜厚会根据实际情况做
    发表于 01-11 15:47 368次阅读
    <b class='flag-5'>PCB</b>设计过程<b class='flag-5'>中</b><b class='flag-5'>电源</b><b class='flag-5'>平面</b>的处理

    EDA365:PCB设计电源平面处理要点分析

    电源线宽或铜皮的宽度是否足够。要考虑电源线宽,首先要了解电源信号处理所在层的铜厚是多少,常规工艺下PCB外层(TOP/BOTTOM层)铜厚是1OZ(35um),内层铜厚会根据实际情况做
    发表于 01-10 15:48 607次阅读
    EDA365:<b class='flag-5'>PCB</b>设计<b class='flag-5'>电源</b><b class='flag-5'>平面</b>处理要点<b class='flag-5'>分析</b>

    PCB信号跨分割线需要怎么处理?

    PCB设计过程电源平面的分割或者是地平面的分割,会导致平面的不完整,这样信号走线的时候,它
    发表于 01-10 15:28 1034次阅读
    <b class='flag-5'>PCB</b>信号跨分割线需要怎么处理?

    PCB设计信号线跨分割会有什么影响

    我们PCB的信号都是阻抗线,是有参考的平面层。但是由于PCB设计过程电源
    发表于 01-03 15:12 1022次阅读
    <b class='flag-5'>PCB</b>设计信号线跨分割会有什么影响

    PCB设计技巧:电源平面处理

    电源线宽或铜皮的宽度是否足够。要考虑电源线宽,首先要了解电源信号处理所在层的铜厚是多少,常规工艺下PCB外层(TOP/BOTTOM层)铜厚是1OZ(35um),内层铜厚会根据实际情况做
    发表于 12-27 16:07 829次阅读
    <b class='flag-5'>PCB</b>设计技巧:<b class='flag-5'>电源</b><b class='flag-5'>平面</b>处理