0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

埃米级芯片:拓展摩尔定律 打破性能瓶颈

新思科技 来源:新思科技 2023-12-13 17:38 次阅读

埃米是一种非常小的度量单位,相当于一米的百亿分之一。它通常用于表示原子和分子的尺寸。在半导体行业中,埃米也用于表示IC器件的尺寸。2021年,英特尔率先制定了一个具有开创性的埃米级制程路线图,并计划于2024年投入生产(点击阅读原文查看)。此外,独立纳米和数字威廉希尔官方网站 研究中心IMEC也提出了一个芯片微缩路线图,预测到2036年,半导体行业将能够发展到2埃米级别。

要实现埃米级芯片设计,需要整个半导体生态系统的协作和创新。从光刻领域的创新,到新型晶体管结构的创新(如GAA和CFET),再到Multi-Die系统的发展,这些领域的创新威廉希尔官方网站 将引领下一代埃米级芯片设计。

在埃米时代,纳米已经不再小了。埃米时代的世界是什么样的?电子行业又如何才能充分发挥埃米制程的潜力?

埃米级芯片,拓展摩尔定律,打破性能瓶颈

摩尔定律指出,每一代的晶体管密度都能达到上一代的两倍,在纳米制程时代,摩尔定律正在趋近极限。在埃米级时代,芯片上集成的晶体管数量将多达数十亿个,器件将能够以更低的功耗提供更高的性能。芯片制程进入埃米级有望扩展摩尔定律的优势,为打破芯片性能瓶颈提供新的可能。

埃米级的设计为自然语言处理、基因组测序、工业4.0制造和科学计算等应用奠定了新的计算可能性基础。未来,以下场景都可能会实现:

生产线配备更紧凑的机器人设备,这些设备经过训练后,能够比当今的工厂自动化设备更快、更精确地完成任务

通过更快、更准确的建模能力,预测气候变化的影响、加速新疫苗研发、提供对财务投资组合和风险管理的更深层次的见解

为汽车等行业提供更高效的研发和产品设计流程

埃米级设计,消除阻碍SoC性能的瓶颈

芯片的各个层面都存在着瓶颈。以神经网络处理为例,神经网络用于深度学习算法,它可以识别原始数据中的模式和相关性,进行聚类、分类,并从中学习以实现持续改进。这些算法依赖于大量并行处理器的协同工作。一块芯片上可以放置的处理器越多,芯片运行这些海量工作负载的速度就越快。然而,为了实现支持此类应用的SoC所需的PPA,芯片开发者必须克服以下多个瓶颈:

晶体管层面,在将晶体管连接在一起的互连组件周围存在着一系列瓶颈。

处理器层面,开发者需要在以下各个方面做出权衡。比如处理器的复杂性和数量、连接它们所需的互连组件数量,以及在处理单元与系统内存之间快速移动数据的需要。

内存层面,由于片上内存的微缩速度不及标准单元迅速,二者之间会存在一定的差距。因此,随着逻辑器件变得越来越小,如果内存尺寸无法相应地缩小,能够提取的内容就会受到限制。

更大的处理器似乎更易于编程且能够执行更多任务,但开发更大的处理器虽然看起来更容易,其实会增加高效设计和制造的复杂性,还可能导致并行任务的数量减少、简单任务的功耗增加。所以采用埃米级设计才是解决之道。

埃米级制程的设计基于大量的研发实践,涵盖了整个设计链中的诸多威廉希尔官方网站 ,包括核心制程定义、芯片设计构建块,以及支持芯片设计的一套设计自动化工具和流程。其构成要素包括:

用于增强传统光刻微缩的新晶体管结构

用于构建数字孪生候选晶体管结构的威廉希尔官方网站 ,以及用于评估和选择最有前景的结构的制程定义

作为芯片设计构建块的新逻辑库和内存架构

电子设计自动化(EDA)工具中的新算法,使开发者能够实现和验证使用这些构建块设计的芯片(晶体管数量呈指数级增长)

利用先进的光刻工具,晶圆厂能够刻印更小的结构。目前正在研发的高数值孔径(High-NA)极紫外(EUV)都是预计将于2025年交付给晶圆厂的先进光刻工具。此外,GAA晶体管结构允许将多个通道堆叠在一起,从而增加芯片密度。

将埃米级架构中的供电从晶体管上方移至晶体管下方,这一工艺被称为背面供电(BSPDN)。背面供电可以充分发挥GAA结构的高密度潜力。通过将供电置于背面,开发者能够缩小逻辑单元的高度,因为在背面供电中,逻辑单元已不再需要顶部和底部的宽导线(称为电源轨)来传输电力。此外,这还节省了单元上方布线层上的大量布线资源,使得芯片的正面可用于信号路由,并防止互连引发的瓶颈。

不仅如此,GAA还可以实现FinFET结构无法实现的内存扩展,同时减少漏电流并增加驱动电流,以进一步提升芯片整体性能。CFET是GAA更为复杂的版本,它由垂直堆叠的晶体管组成,具有显著的面积和性能优势,尤其是对于存储器而言。由于CFET针对的是2.5纳米及更小制程的设计,因此有望在埃米时代发挥不可或缺的作用。

另一项与埃米级裸片相媲美的创新是Multi-Die系统,它由多个裸片(通常称为小芯片)组成,裸片之间相互堆叠和/或与中介层连接,最终集成在单个封装中。这种相互依赖的架构可通过分解的方式来构建,也就是将大的裸片划分为较小的裸片以提高系统良率并降低成本,或是将使用不同工艺威廉希尔官方网站 的裸片组装到一起以提供出色的系统功能和性能。与大尺寸单片SoC相比,Multi-Die系统能够加速系统功能的扩展,并具有降低风险、缩短产品上市时间、降低系统功耗以及快速开发新产品版本等优势。

埃米级裸片可以在Multi-Die系统中发挥重要作用,支持带宽密集型应用所需的处理能力,而基于旧制程节点的裸片可用于满足负担较小的芯片功能。

半导体行业的新发展之路

随着芯片上封装的元件数量变得十分庞大,设计和验证过程变得愈发复杂,加之埃米级晶体管数量高达数十亿个之多,在驱动EDA流程的算法中集成人工智能AI)和机器学习(ML)的作用就凸显出来。人工智能和机器学习能够以比传统EDA解决方案快几个数量级的速度,寻找重复性大型任务中的模式或效率优化空间,并发现极其微小的错误,例如十亿分之一的相关错误。

此外,机器学习还使得位于实现周期前端的应用(例如综合)能够尽早了解流程后期可能发生的情况,以便开发者做出预测性决策,从而引导流程通向最佳解决方案。人工智能和机器学习的应用不仅有助于提高开发效率和设计质量,还能缩短埃米级裸片的周转时间。

除了使用AI驱动的设计和验证流程外,经验证的IP也能够降低集成风险,同时缩短先进半导体器件的上市时间。芯片生命周期管理(具有片上监控功能)等解决方案有助于跟踪芯片在整个生命周期中的健康状况和性能,触发调制电源电压等方法以延长芯片的使用寿命,并在芯片失效之前请求予以更换。

实现更优化的PPA一直是开发者们努力的方向,埃米级微缩是其中具有代表性的创新之一。通过这一威廉希尔官方网站 ,未来的芯片可能会以超乎想象的方式影响这个世界。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19313

    浏览量

    230055
  • 半导体
    +关注

    关注

    334

    文章

    27437

    浏览量

    219355
  • 机器人
    +关注

    关注

    211

    文章

    28467

    浏览量

    207330
  • 摩尔定律
    +关注

    关注

    4

    文章

    634

    浏览量

    79071
  • 晶体管
    +关注

    关注

    77

    文章

    9701

    浏览量

    138342

原文标题:让摩尔定律走出极限的,会是埃米级芯片吗?

文章出处:【微信号:Synopsys_CN,微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    击碎摩尔定律!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    电子发烧友网报道(文/吴子鹏)摩尔定律是由英特尔创始人之一戈登·摩尔提出的经验规律,描述了集成电路上的晶体管数量和性能随时间的增长趋势。根据摩尔定律,集成电路上可容纳的晶体管数目约每隔
    的头像 发表于 06-04 00:06 4070次阅读
    击碎<b class='flag-5'>摩尔定律</b>!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    AI时代的存储墙,哪种存算方案才能打破

    回顾计算行业几十年的历史,芯片算力提升在几年前,还在遵循摩尔定律。可随着如今摩尔定律显著放缓,算力发展已经陷入瓶颈。而且祸不单行,陷入同样困境的还有存储。从新标准推进的角度来看,存储市
    的头像 发表于 04-21 01:36 3574次阅读
    AI时代的存储墙,哪种存算方案才能<b class='flag-5'>打破</b>?

    玻璃基板面临的四大核心威廉希尔官方网站 攻关难点

    人工智能的发展对高性能计算、可持续威廉希尔官方网站 和网络硅片的需求激增,这推动了研发投资的增加,加速了半导体威廉希尔官方网站 的创新进程。然而,随着摩尔定律在单个芯片层面逐渐放缓,业界开始探索在ASIC封装中集成更多
    的头像 发表于 12-22 15:27 396次阅读
    玻璃基板面临的四大核心威廉希尔官方网站
攻关难点

    摩尔定律时代,提升集成芯片系统化能力的有效途径有哪些?

    电子发烧友网报道(文/吴子鹏)当前,终端市场需求呈现多元化、智能化的发展趋势,芯片制造则已经进入后摩尔定律时代,这就导致先进的工艺制程虽仍然是芯片性能提升的重要手段,但效果已经不如从前
    的头像 发表于 12-03 00:13 2353次阅读

    聚焦EDA AI和3D IC等创新威廉希尔官方网站 ,西门子EDA全面赋能系统创新

    电子发烧友网报道(文/吴子鹏)时至今日,摩尔定律依然在引领全球半导体产业的发展。然而,就连英特尔公司都承认,摩尔定律放缓了。在后摩尔定律时代,由于数据规模暴涨,终端应用对芯片和硬件
    的头像 发表于 09-25 00:05 2854次阅读
    聚焦EDA AI和3D IC等创新威廉希尔官方网站
,西门子EDA全面赋能系统<b class='flag-5'>级</b>创新

    奇异摩尔专用DSA加速解决方案重塑人工智能与高性能计算

    随着摩尔定律下的晶体管缩放速度放缓,单纯依靠增加晶体管密度的通用计算的边际效益不断递减,促使专用计算日益多样化,于是,针对特定计算任务的专用架构成为计算创新的焦点。
    的头像 发表于 09-19 11:45 684次阅读
    奇异<b class='flag-5'>摩尔</b>专用DSA加速解决方案重塑人工智能与高<b class='flag-5'>性能</b>计算

    高算力AI芯片主张“超越摩尔”,Chiplet与先进封装威廉希尔官方网站 迎百家争鸣时代

    越来越差。在这种情况下,超越摩尔逐渐成为打造高算力芯片的主流威廉希尔官方网站 。   超越摩尔是后摩尔定律时代三大威廉希尔官方网站 路线之一,强调利用层堆叠和高速接口威廉希尔官方网站 将处理、模拟/射频、光电、能源、传感等功能
    的头像 发表于 09-04 01:16 3330次阅读
    高算力AI<b class='flag-5'>芯片</b>主张“超越<b class='flag-5'>摩尔</b>”,Chiplet与先进封装威廉希尔官方网站
迎百家争鸣时代

    “自我实现的预言”摩尔定律,如何继续引领创新

    未来的自己制定了一个远大但切实可行的目标一样, 摩尔定律是半导体行业的自我实现 。虽然被誉为威廉希尔官方网站 创新的“黄金法则”,但一些事情尚未广为人知……. 1. 戈登·摩尔完善过摩尔定律的定义 在1965年的文章中,戈登·
    的头像 发表于 07-05 15:02 282次阅读

    封装威廉希尔官方网站 会成为摩尔定律的未来吗?

    性能也随之增强。这不仅是一条观察法则,更像是一道命令,催促着整个行业向着更小、更快、更便宜的方向发展。01但这些年来,摩尔定律好像遇到了壁垒。我们的芯片已经小得难
    的头像 发表于 04-19 13:55 353次阅读
    封装威廉希尔官方网站
会成为<b class='flag-5'>摩尔定律</b>的未来吗?

    为什么使用FPGA?FPGA为什么比GPU的延迟低这么多?

    众所周知,通用处理器(CPU)的摩尔定律已入暮年,而机器学习和 Web 服务的规模却在指数增长。
    的头像 发表于 04-16 16:35 2230次阅读
    为什么使用FPGA?FPGA为什么比GPU的延迟低这么多?

    天津大学与佐治亚理工学院共创石墨烯芯片新时代

    根据摩尔定律芯片中的晶体管数量大约每2年就会增加一倍。这一观察结果最初由戈登·摩尔在 1965 年描述,但后来摩尔本人预测,这个比率最终会放慢速度,不幸的是,这是真实的。
    发表于 02-21 15:32 461次阅读
    天津大学与佐治亚理工学院共创石墨烯<b class='flag-5'>芯片</b>新时代

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 758次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    摩尔定律的终结:芯片产业的下一个胜者法则是什么?

    在动态的半导体威廉希尔官方网站 领域,围绕摩尔定律的持续讨论经历了显着的演变,其中最突出的是 MonolithIC 3D 首席执行官Zvi Or-Bach于2014 年的主张。
    的头像 发表于 01-25 14:45 1153次阅读
    <b class='flag-5'>摩尔定律</b>的终结:<b class='flag-5'>芯片</b>产业的下一个胜者法则是什么?

    芯片先进封装的优势

    芯片的先进封装是一种超越摩尔定律的重要威廉希尔官方网站 ,它可以提供更好的兼容性和更高的连接密度,使得系统集成度的提高不再局限于同一颗芯片
    的头像 发表于 01-16 14:53 1192次阅读

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 853次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?