前言
- 12位ADC
 - 2个采样保持器
 - 同步采样或顺序采样,使用顺序采样
 - 输入范围0-3V
 - 时钟配置为最高25MHz
 - 级联模式或双排序模式,采用级联模式,8状态排序器SEQ1和SEQ2构成16状态的SEQ
 - 选择EPWMxSOCA作为触发源启动ADC转换,采样频率为10K
 
主要内容:
1、ADC原理+DSP的ADC原理
 2、具体程序
1、ADC转换原理
ADC就是模数转换器,将interwetten与威廉的赔率体系 量转换为数字量,通常就是对电流、电压等进行采样,然后进行转换,得到数字量,再在软件中进行编程换算得到实际的值。
A/D转换一般要经过取样、保持、量化及编码4个过程。28335的ADC模块如Figure1-1所示。采样数据通过通过传输至Analog MUX,然后送到EPWM SOCA处理,然后送至12位ADC转换器模组进行转换,输出到结果寄存器。
转换公式如下:
RealValue= SampleValue * 3.0f / 4096.0f
2、触发方式
三种触发方式可以开始ADC转换,具体如下:
- S/W软件立即启动
 - EPWM SOCA、SOCB转换启动
 - XINT2 ADC转换开始
 
采用EPWM SOCA启动方式

3、如何触发ADC?
1、使用EPWM的SOCA触发;
AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1 
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1;  // Enable SEQ1 interrupt (every EOS)
2、使能EPWMxSOCA信号的产生,以何种方式何时产生;
EPwm1Regs.ETSEL.bit.SOCAEN = 1;        // Enable SOC on A group
EPwm1Regs.ETSEL.bit.SOCASEL = 4;       // Select SOC from from CPMA on upcount CTR = CMPA且为向上计数是产生触发事件
EPwm1Regs.ETPS.bit.SOCAPRD = 1;        // Generate pulse on 1st event  在第一个事件时产生SOCA信号
EPwm1Regs.CMPA.half.CMPA = 0x0080;    // Set compare A value
3、EPWM为up-down模式,触发频率为10K,时钟为150MHz;
EPwm1Regs.TBPRD = 0x1D4C;              // Set period for ePWM1  7500  10K
EPwm1Regs.TBCTR = 0x0000U;        // 
EPwm1Regs.TBCTL.bit.CTRMODE = 2;      // up-down模式
EPwm1Regs.TBCTL.bit.HSPCLKDIV = 0x00;  //   使用系统时钟
EPwm1Regs.TBCTL.bit.CLKDIV = 0x00;
4、ADC初始化配置程序如下:
#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include File
#include "DSP2833x_Adc.h"
#define ADC_usDELAY 5000L
Uint16 Sample_I = 0U;
float Real_I = 0.0f;
float Base_Current = 3.0f / 4096.0f;
void init_28335ADC_CLK(void)
{
  EALLOW;
  #define ADC_MODCLK 0x03
  SysCtrlRegs.HISPCP.all = ADC_MODCLK;
  EDIS;
}
// ADC初始化
void init_adc_config(void)
{
  extern void DSP28x_usDelay(Uint32 Count);
  EALLOW;
  SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;
  ADC_cal();
  EDIS;
  AdcRegs.ADCTRL3.all = 0x00E0;  // Power up bandgap/reference/ADC circuits
  DELAY_US(ADC_usDELAY);         // Delay before converting ADC channels
  // Configure ADC
   AdcRegs.ADCMAXCONV.all = 0x000F;       // Setup 1 conv's on SEQ1  16个通道
   AdcRegs.ADCTRL1.bit.ACQ_PS = 0x1;
   AdcRegs.ADCTRL3.bit.SMODE_SEL = 0;  // 顺序采样
   AdcRegs.ADCTRL1.bit.CPS = 0;      // 对外设时钟HSPCLK不分频
   AdcRegs.ADCTRL3.bit.ADCCLKPS = 0x0;  // ADC内核时钟不分频 ADCCLK = HSPCLK / (CPS + 1) = 25MHz
   AdcRegs.ADCTRL1.bit.SEQ_CASC = 1;  // 级联排序模式
   AdcRegs.ADCTRL1.bit.CONT_RUN = 1;  // 连续模式
   AdcRegs.ADCTRL1.bit.SEQ_OVRD = 1;  // 排序覆盖
  // 转换顺序
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x00U; // Setup ADCINA0 as 1st SEQ1 conv.
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x01U;
   AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x02U;
   AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x03U;
   AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x04U;
   AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x05U;
   AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x06U;
   AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x07U;
   AdcRegs.ADCCHSELSEQ3.bit.CONV08 = 0x08U;
   AdcRegs.ADCCHSELSEQ3.bit.CONV09 = 0x09U;
   AdcRegs.ADCCHSELSEQ3.bit.CONV10 = 0x0AU;
   AdcRegs.ADCCHSELSEQ3.bit.CONV11 = 0x0BU;
   AdcRegs.ADCCHSELSEQ4.bit.CONV12 = 0x0CU;
   AdcRegs.ADCCHSELSEQ4.bit.CONV13 = 0x0DU;
   AdcRegs.ADCCHSELSEQ4.bit.CONV14 = 0x0EU;
   AdcRegs.ADCCHSELSEQ4.bit.CONV15 = 0x0FU;
   AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1
   AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1;  // Enable SEQ1 interrupt (every EOS)
   // Assumes ePWM1 clock is already enabled in InitSysCtrl();
   EPwm1Regs.ETSEL.bit.SOCAEN = 1;        // Enable SOC on A group
   EPwm1Regs.ETSEL.bit.SOCASEL = 4;       // Select SOC from from CPMA on upcount CTR = CMPA且为向上计数是产生触发事件
   EPwm1Regs.ETPS.bit.SOCAPRD = 1;        // Generate pulse on 1st event  在第一个事件时产生SOCA信号
   EPwm1Regs.CMPA.half.CMPA = 0x0080;    // Set compare A value
   // 设置EPWM触发源
   EPwm1Regs.TBPRD = 0x1D4C;              // Set period for ePWM1  7500  10K
   EPwm1Regs.TBCTR = 0x0000U;        // 
   EPwm1Regs.TBCTL.bit.CTRMODE = 2;      // up-down模式
   EPwm1Regs.TBCTL.bit.HSPCLKDIV = 0x00;  //   使用系统时钟
   EPwm1Regs.TBCTL.bit.CLKDIV = 0x00;
}
// 转换计算
interrupt void adc_isr(void)
{
  Sample_I = AdcRegs.ADCRESULT0 > >4;    // 采样数据
  Real_I = (float)Sample_I * Base_Current;// 实际电流
}
注意
1、ADC通道、结果寄存器对应关系:
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x02U; // Setup ADCINA0 as 1st SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x03U;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x00U;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x01U;
ADCINA2 - > AdcRegs.ADCRESULT0;
ADCINA3 - > AdcRegs.ADCRESULT1;
ADCINA0 - > AdcRegs.ADCRESULT2;
ADCINA1 - > AdcRegs.ADCRESULT3;
由上面的代码可知,你的通道对应哪个CONVxx,则结果就存在哪个结果寄存器AdcRegs.ADCRESULTxx:
 CONV00------------------AdcRegs.ADCRESULT0
 CONV01------------------AdcRegs.ADCRESULT1
 …
 CONV15------------------AdcRegs.ADCRESULT15
这个对应关系是固定不变的,而A/D输入通道,可以根据自己选择排序控制寄存器的哪四位即CONVxx输入,然后进行转换。
2、为什么结果寄存器的值由进行右移4位
结果寄存器是16位的,而28335的ADC模块是12位的,一般使用的是映射在外设帧2,左对齐方式,,故前4位是保留的,所以需要右移4位才能得到实际值。

ADC结果寄存器是双映射。外设帧2(0x7108-0x7117)中的位置为2等待状态,且为左对齐。外设帧0空间(0x0B00-0x0B0F)的位置对CPU访问是1等待状态和对于DMA访问是0等待状态,右对齐。在ADC的高速/连续转换使用期间,使用0等待状态位置进行ADC结果到用户内存的快速转换。
DSP2833x_Headers_nonBIOS.cmd中
 ADC_MIRROR : origin = 0x000B00, length = 0x000010 /* ADC Results register mirror /
 ADC : origin = 0x007100, length = 0x000020 / ADC registers */
- 
                                寄存器
                                +关注
关注
31文章
5342浏览量
120297 - 
                                DSP28335
                                +关注
关注
22文章
59浏览量
40652 - 
                                采样保持器
                                +关注
关注
0文章
5浏览量
8980 - 
                                ADC模块
                                +关注
关注
1文章
19浏览量
11069 - 
                                EPWM模块
                                +关注
关注
1文章
4浏览量
1872 
发布评论请先 登录
相关推荐
dsp28335如何入门:程序设计步骤
dsp28335开发板中文资料汇总(dsp28335最小系统_引脚图_封装_初始化程序)
    
使用DSP28335控制电机的资料合集免费下载
    
          
        
        
DSP28335的ADC模块使用介绍
 
    
    
    
    
    
           
            
            
                
            
评论