0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习中统计概率分布大全

科技绿洲 来源:Python数据科学 作者:Python数据科学 2023-11-03 10:46 次阅读

1. 随机变量

离散随机变量

随机实验的所有可能结果都是随机变量。一个随机变量集合用 表示。

如果实验可能的结果是可数的,那么它被称为离散随机变量。例如,如果你抛硬币 10 次,你能得到的正面数可以用一个数字表示。或者篮子里有多少苹果仍然是可数的。

连续随机变量

这些是不能以离散方式表示的值。例如,一个人可能有 1.7 米高,1米 80 厘米,1.6666666...米高等等。

2. 密度函数

我们使用密度函数来描述随机变量 的概率分布。

PMF:概率质量函数

返回离散随机变量 等于 的值的概率。所有值的总和等于 1。PMF 只能用于离散变量。

图片

PMF。来源:https://en.wikipedia.org/wiki/Probability_mass_function

PDF:概率密度函数

它类似于连续变量的 PMF 版本。返回连续随机变量 X 在某个范围内的概率。

图片

PDF。来源:https://byjus.com/maths/probability-density-function/

CDF:累积分布函数

返回随机变量 X 取小于或等于 x 的值的概率。

图片

CDF(指数分布的累积分布函数)。来源:https://en.wikipedia.org/wiki/Cumulative_distribution_function

3. 离散分布

伯努利分布

我们只有一个试验(只有一个观察结果)和两个可能的结果。例如,抛硬币。

我们有一个真的(1)的结果和一个假的(0)的结果。假设我们接受正面为真(我们可以选择正面为真或成功)。那么,如果正面朝上的概率是 ,相反情况的概率就是 。

import seaborn as sns
from scipy.stats import bernoulli
# 单一观察值
# 生成数据 (1000 points, possible outs: 1 or 0, probability: 50% for each)
data = bernoulli.rvs(size=1000,p=0.5)
# 绘制图形
ax = sns.distplot(data_bern,kde=False,hist_kws={"linewidth": 10,'alpha':1})
ax.set(xlabel='Bernouli', ylabel='freq')

图片

二项式分布

伯努利分布是针对单个观测结果的。多个伯努利观测结果会产生二项式分布。例如,连续抛掷硬币。

试验是相互独立的。一个尝试的结果不会影响下一个。

二项式分布可以表示为 。 是试验次数, 是成功的概率。

让我们进行一个实验,我们连续抛掷一枚公平的硬币 20 次。

import matplotlib.pyplot as plt
from scipy.stats import binom
n = 20
# 实验次数
p = 0.5
# 成功的概率
r = list(range(n + 1))
# the number of success
# pmf值
pmf_list = [binom.pmf(r_i, n, p) for r_i in r ]
# 绘图
plt.bar(r, pmf_list)plt.show()

图片

它看起来像正态分布,但请记住这些值是离散的。

现在这次,你有一枚欺诈硬币。你知道这个硬币正面向上的概率是 0.7。因此,p = 0.7。

图片

带有偏差硬币的二项式分布

该分布显示出成功结果数量增加的概率增加。

: 成功的概率 : 实验次数 : 失败的概率

均匀分布

所有结果成功的概率相同。掷骰子,1 到 6。

图片掷 6 次。

data = np.random.uniform(1, 6, 6000)

图片

掷 6000 次。

Poisson 分布

它是与事件在给定时间间隔内发生频率相关的分布。

, 是在指定时间间隔内预期发生的事件次数。它是在该时间间隔内发生的事件的已知平均值。 是事件在指定时间间隔内发生的次数。如果事件遵循泊松分布,则:

在泊松分布中,事件彼此独立。事件可以发生任意次数。两个事件不能同时发生。

如每 60 分钟接到 4 个电话。这意味着 60 分钟内通话的平均次数为 4。让我们绘制在 60 分钟内接到 0 到 10 个电话的概率。

import matplotlib.pyplot as plt
from scipy.stats
import poisson
r = range(0,11)
# 呼叫次数
lambda_val = 4
# 均值
# 概率值
data = poisson.pmf(r, lambda_val)
# 绘图
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
ax.plot(r, data, 'bo', ms=8, label='poisson')
plt.ylabel("Probability", fontsize="12")
plt.xlabel("# Calls", fontsize="12")
plt.title("Poisson Distribution", fontsize="16")
ax.vlines(r, 0, data, colors='r', lw=5, alpha=0.5)

图片

4. 连续分布

正态分布

最著名和最常见的分布(也称为高斯分布),是一种钟形曲线。它可以通过均值和标准差定义。正态分布的期望值是均值。

曲线对称。均值、中位数和众数相等。曲线下总面积为 1。

大约 68%的值落在一个标准差范围内。~95% 落在两个标准差范围内,~98.7% 落在三个标准差范围内。

图片

import scipy
mean = 0
standard_deviation = 5
x_values = np. arange(-30, 30, 0.1)
y_values = scipy.stats.norm(mean, standard_deviation)
plt.plot(x_values, y_values. pdf(x_values))

图片

正态分布的概率密度函数为:

是均值, 是常数, 是标准差。

QQ 图

我们可以使用 QQ 图来直观地检查样本与正态分布的接近程度。

计算每个数据点的 z 分数并对其进行排序,然后在 y 轴上表示它们。X 轴表示值的排名的分位数。

这个图上的点越接近对角线,分布就越接近正态分布。

import numpy as np
import statsmodels.api as sm
points = np.random.normal(0, 1, 1000)
fig = sm.qqplot(points, line ='45')
plt.show()

图片

长尾分布

尾巴是分布的长而窄的部分,离群值就位于其中。当一侧尾巴不同于另一侧时,就称为偏斜。下图是长尾分布的 QQ 图。

图片

import matplotlib.pyplot as plt
from scipy.stats import skewnorm
def generate_skew_data(n: int, max_val: int, skewness: int):
# Skewnorm function
random = skewnorm.rvs(a = skewness,loc=max_val, size=n)
plt.hist(random,30,density=True, color = 'red', alpha=0.1)
plt.show()

generate_skew_data(1000, 100, -5) # negative (-5)-> 左偏分布

图片

generate_skew_data(1000, 100, 5) # positive (5)-> 右偏分布

图片

学生 t 检验分布

正态但有尾(更厚、更长)。

图片

t 分布和 z 分布。来源:https://www.geeksforgeeks.org/students-t-distribution-in-statistics/

t 分布是具有较厚尾部的正态分布。如果可用数据较少(约 30 个),则使用 t 分布代替正态分布。

在 t 分布中,自由度变量也被考虑在内。根据自由度和置信水平在 t 分布表中找到关键的 t 值。这些值用于假设检验。

t 分布表情移步:https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf。

对数正态分布

随机变量 X 的对数服从正态分布的分布。

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
X = np.linspace(0, 6, 1500)
std = 1
mean = 0
lognorm_distribution = stats.lognorm([std], loc=mean)
lognorm_distribution_pdf = lognorm_distribution.pdf(X)
fig, ax = plt.subplots(figsize=(8, 5))
plt.plot(X, lognorm_distribution_pdf, label="μ=0, σ=1")
ax.set_xticks(np.arange(min(X), max(X)))
plt.title("Lognormal Distribution")
plt.legend()plt.show()

图片

指数分布

我们在 Poisson 分布中研究了在一定时间间隔内发生的事件。在指数分布中,我们关注的是两个事件之间经过的时间。如果我们把上面的例子倒过来,那么两个电话之间需要多长时间?

因此,如果 X 是一个随机变量,遵循指数分布,则累积分布函数为:

是均值, 是常数。

from scipy.stats import expon
import matplotlib.pyplot as plt
x = expon.rvs(scale=2, size=10000) # 2 calls
# 绘图
plt.hist(x, density=True, edgecolor='black')

图片

x 轴表示时间间隔的百分比。

韦伯分布

它是指时间间隔是可变的而不是固定的情况下使用的指数分布的扩展。在 Weibull 分布中,时间间隔被允许动态变化。

是形状参数,如果是正值,则事件发生的概率随时间而增加,反之亦然。 是尺度参数。

import matplotlib.pyplot as plt
x = np.arange(1,100.)/50.
def weib(x,n,a):
return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
x = np.arange(1,100.)/50.
scale = count.max()/weib(x, 1., 5.).max()
plt.plot(x, weib(x, 1., 5.)*scale)
plt.show()

图片

Gamma 分布

指与第 n 个事件发生所需的时间有关的分布,而指数分布则与首次事件发生的时间有关。

import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
#Gamma distributions
x = np.linspace(0, 60, 1000)
y1 = stats.gamma.pdf(x, a=5, scale=3)
y2 = stats.gamma.pdf(x, a=2, scale=5)
y3 = stats.gamma.pdf(x, a=4, scale=2)
# plots
plt.plot(x, y1, label='shape=5, scale=3')
plt.plot(x, y2, label='shape=2, scale=5')
plt.plot(x, y3, label='shape=4, scale=2')
#add legend
plt.legend()
#display
plotplt.show()

图片

Gamma 分布。X 轴表示随机变量 X 可能取到的潜在值,Y 轴表示分布的概率密度函数(PDF)值。

Gamma 分布

它用于统计检验。这通常在实际分布中不会出现。

# x轴范围0-10,步长0.25
X = np.arange(0, 10, 0.25)
plt.subplots(figsize=(8, 5))
plt.plot(X, stats.chi2.pdf(X, df=1), label="1 dof")
plt.plot(X, stats.chi2.pdf(X, df=2), label="2 dof")
plt.plot(X, stats.chi2.pdf(X, df=3), label="3 dof")
plt.title("Chi-squared Distribution")
plt.legend()
plt.show()

图片

中心极限定理

当我们从人群中收集足够大的样本时,样本的平均值将具有正态分布,即使人群不是正态分布。

我们可以从任何分布(离散或连续)开始,从人群中收集样本并记录这些样本的平均值。随着我们继续采样,我们会注意到平均值的分布正在慢慢形成正态分布。

图片

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 函数
    +关注

    关注

    3

    文章

    4333

    浏览量

    62691
  • 机器学习
    +关注

    关注

    66

    文章

    8422

    浏览量

    132714
  • 随机变量
    +关注

    关注

    0

    文章

    11

    浏览量

    6462
收藏 人收藏

    评论

    相关推荐

    概率统计-怎么对csv文件进行概率密度函数和累积分布函数

    问一下,怎么对csv文件进行概率密度函数和累积分布函数。
    发表于 02-27 22:19

    【下载】《机器学习》+《机器学习实战》

    尽可能少地使用数学知识. 然而, 少量的概率统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便
    发表于 06-01 15:49

    统计学的概率分布

    统计学术语总结
    发表于 09-27 16:24

    机器学习之偏差、方差,生成模型,判别模型,先验概率,后验概率

    机器学习:偏差、方差,生成模型,判别模型,先验概率,后验概率
    发表于 05-14 15:23

    概率论与数理统计学习资料

     《概率论与数理统计》优秀学习资料,概率论与数理统计学习资料随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为
    发表于 02-13 11:40 0次下载

    matlab概率统计实验

    matlab概率统计实验9.1 实验(I):Galton钉板试验9.1.1 实验与观察: Galton钉板模型和二项分布        1. 动
    发表于 10-17 00:38 4291次阅读
    matlab<b class='flag-5'>概率</b><b class='flag-5'>统计</b>实验

    工程数学概率统计教程课后习题答案

    本内容向大家提供了《工程数学概率统计教程》的课后习题答案, 完整的详细的解题思路及题目的答案等,适合广大学生及相关人员学习借鉴
    发表于 03-15 15:14 56次下载

    概率论与数理统计习题答案

    电子发烧友为大家提供了 概率论 与数理统计习题答案,帮助您解决在学习中遇到无法单独解决的问题,希望对您的学习有所帮助,为您的学习提供便捷之路
    发表于 07-14 16:56 84次下载

    机器学习:泊松分布与指数分布

    统计概念其实容易理解多了。 我举一个例子,什么是泊松分布和指数分布?恐怕大多数人都说不清楚。 我可以在10分钟内,让你毫不费力地理解这两个概念。一句话总结:泊松分布是单位时间内独立事件
    发表于 11-29 03:44 4582次阅读

    概率论与数理统计学习课件合集免费下载

    本文档的主要内容详细介绍的是概率论与数理统计学习课件合集免费下载包括了:第一章 概率论的基本概念,第二章 随机变量及其分布,第三章 多维
    发表于 05-21 08:00 5次下载
    <b class='flag-5'>概率</b>论与数理<b class='flag-5'>统计</b>的<b class='flag-5'>学习</b>课件合集免费下载

    机器学习的范围和算法

    什么是机器学习机器学习是英文名称MachineLearning(简称ML)的直译。机器学习涉及
    发表于 11-12 10:19 1410次阅读

    机器学习的范围/算法/分类

    什么是机器学习机器学习是英文名称MachineLearning(简称ML)的直译。机器学习涉及
    发表于 01-21 09:29 3576次阅读

    深度学习基本概率分布教程

    在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后
    发表于 08-02 09:54 577次阅读

    PyTorch教程2.6之概率统计

    电子发烧友网站提供《PyTorch教程2.6之概率统计.pdf》资料免费下载
    发表于 06-05 11:29 1次下载
    PyTorch教程2.6之<b class='flag-5'>概率</b><b class='flag-5'>统计</b>

    机器学习统计概率分布全面总结

    随机实验的所有可能结果都是随机变量。一个随机变量集合用 表示。 如果实验可能的结果是可数的,那么它被称为离散随机变量。例如,如果你抛硬币 10 次,你能得到的正面数可以用一个数字表示。
    发表于 01-02 11:47 425次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>统计</b><b class='flag-5'>概率</b><b class='flag-5'>分布</b>全面总结