0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于Anaconda安装pytorch深度学习环境+pycharm安装---免额外安装CUDA和cudnn

成都华江信息 2023-10-10 10:16 次阅读

前言

最近由于项目需要,之前我们在利用GPU进行深度学习的时候,都要去NVIDIA的官网下载CUDA的安装程序和cudnn的压缩包,然后再进行很繁琐的系统环境配置。不仅环境配置麻烦,而且还特别容易配置错误,特别还有CUDA和cudnn版本的对应也特别容易搞错,但是利用anaconda安装配置pytorch和paddle环境的时候会自动帮我们配置好cuda和cudnn。这篇文章可以帮助小白快速配置深度学习环境。

一、NVIDIA驱动安装

显卡驱动程序就是用来驱动显卡的程序,它是硬件所对应的软件。驱动程序即添加到操作系统中的一小块代码,其中包含有关硬件设备的信息。正常有显卡的电脑都是有驱动程序的,但是有的时候驱动可能版本比较低,支持的cuda版本也是比较低的(但是有的人的显卡是比较老的,就不建议更新驱动,这样会导致各种各样的问题,但是搞深度学习还是要用一块好的显卡用来学习,这点是过来人有血泪教训的,如果显卡性能强悍,可以大大节省AI模型训练时间,提高效率。)

首先查看电脑的显卡版本,步骤为:此电脑右击-->管理-->设备管理器-->显示适配器。就可以看到电脑显卡的版本了。09eac842-6713-11ee-9788-92fbcf53809c.png

有显卡驱动的,可以直接在桌面右键,找到英伟达驱动控制面板打开就好了。 0a082c16-6713-11ee-9788-92fbcf53809c.png

在得知以上的信息以后我们就可以对应我们的显卡去英伟达官网上去找相对应的显卡驱动更新或者下载了。

显卡驱动的下载地址(可能打开比较慢,多打开几遍)。

然后根据自己的电脑的配置去选择驱动。这里Notebooks是笔记本的意思,所以如果你是笔记本电脑,那么产品系列那个选项就要选(Notebooks)的。还有那个下载类型有两种一个是Studio版本,一个是Game Ready版本。其实两个版本都差不多,一个是偏办公用,一个是偏游戏娱乐。按如下操作将驱动下载下来。然后点击下载来的程序,不断的下一步就好了。

安装(更新)好了显卡驱动以后。我们按下win+R组合键,打开cmd命令窗口。输入如下的命令。

nvidia-smi

得到如下图的信息图,可以看到驱动的版本是442.50;最高支持的CUDA版本是10.2版本。得到显卡的最高支持的CUDA版本,我们就可以根据这个信息来安装环境了。0a59a6ae-6713-11ee-9788-92fbcf53809c.png

二、Anaconda 的安装

打开网址,现在是2021年10月,对应的anaconda版本是支持python3.8。如果想下载之前的版本,或者更低python版本的anaconda,可以打开网址。0a692bf6-6713-11ee-9788-92fbcf53809c.png 双击下载好的anaconda安装包,just me是说只供当前用户使用。all user 是供使用这台电脑的所有用户使用,是权限问题。对空间影响不大。如果你的电脑上只有建了一个用户,all users和just me 的作用是一样的。所以点击just me就好了。0a7b5f1a-6713-11ee-9788-92fbcf53809c.png 然后点击next,当让你选择安装安装路径的时候,一定不要选择默认安装位置,因为默认位置是c盘,以后要在anaconda里面创建环境的时候会很占内存,最好在D盘中创建一个文件夹来放anaconda。0a89889c-6713-11ee-9788-92fbcf53809c.png 和图中一样将图中的√勾上,虽然出现红色的警告,但是要勾上,将anaconda添加到环境变量中去。然后点击完成就好了。0aa1855a-6713-11ee-9788-92fbcf53809c.png 安装完成以后,按下开始键(win键)在左边就会出现anaconda3这个文件夹,可以发现anaconda已经安装好了。0abdb630-6713-11ee-9788-92fbcf53809c.png

三、Pytorch环境安装

按下开始键(win键),点击如图中的图标。打开anaconda的终端。

0ad682c8-6713-11ee-9788-92fbcf53809c.png       执行如下的指令查看有哪些环境

condaenvlist

可以看出来,新安装的anaconda只有一个base环境0aeaddc2-6713-11ee-9788-92fbcf53809c.png 这里先讲一下anaconda环境,首先base环境是一个大的环境,类似一个很大的一个房子(但是没有房间),当我们每创建一个环境就都会相当于在这个大房子里面用隔板创建一个房间,然后这个房间里面可以安装我们所需要的包,这样管理起来就比较方便。如图可以比较直观的诠释anaconda的环境 0af7ed82-6713-11ee-9788-92fbcf53809c.png 创建虚拟环境conda create -n 环境名字(英文) python=x.x(python版本),如下,我就是创建了一个名字叫pytorch,python是3.8版本的环境。

condacreate-npytorchpython=3.8

在base环境中执行如上的命令,就会创建一个新的虚拟环境,这个虚拟环境会安装一些基础的包,如下图所示。询问是否安装的时候,输入y。就可以创建环境了。0b0a7f4c-6713-11ee-9788-92fbcf53809c.png 当安装好了以后,执行conda env list这个命令,就可以看到比一开始多了一个pytorch这个环境。现在我们可以在这个环境里面安装深度学习框架和一些Python包了。0b27f5b8-6713-11ee-9788-92fbcf53809c.png 执行如下命令,激活这个环境。conda activate 虚拟环境名称

condaactivatepytorch

安装pytorch-gup版的环境,由于pytorch的官网在国外,下载相关的环境包是比较慢的,所以我们给环境换源。在pytorch环境下执行如下的命名给环境换清华源。

condaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
condaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
condaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
condaconfig--setshow_channel_urlsyes

0b55a51c-6713-11ee-9788-92fbcf53809c.png       然后打开pytorch的官网,由于开头我们通过驱动检测到我的显卡为 GeForce MX350,最高支持cuda10.2版本,所以我们选择cuda10.2版本的cuda,然后将下面红色框框中的内容复制下来。

0b6d2336-6713-11ee-9788-92fbcf53809c.png       将复制的内容粘贴到pytorch环境下的终端,运行就可以了

condainstallpytorch==1.12.1torchvision==0.13.1torchaudio==0.12.1cudatoolkit=10.2-cpytorch

这时候就开始下载环境所需要的依赖包了。

四、pycharm安装--验证CUDA和cudnn版本

打开这个pycharm网址,可以发现一共有两个版本一个是专业版(Professional),一个是社区版(Community),专业版是需要花钱的,好几百美元一年。而社区版是免费的,但是也够用了,所以就下载安装社区版就好了。0b85d674-6713-11ee-9788-92fbcf53809c.png       将下载好的pycharm安装包,双击。安装的地址最好不要放在C盘,我是安装在D盘(反正我 的软件是不喜欢安装在C盘的。总害怕C盘会满)。0b988f44-6713-11ee-9788-92fbcf53809c.png       将所有的√都勾上,0bad733c-6713-11ee-9788-92fbcf53809c.png 安装好了点击第二个框框,然后点完成就好了0bbf804a-6713-11ee-9788-92fbcf53809c.png 打开pycharm,创建一个新的工程,来测试anaconda是否在安装pytorch和paddlepaddle框架的时候也安装了cuda和cudnn。按如下两图创建一个工程(新工程好像必须要安装一个新的python插件),新的工程最好在D盘一个新的文件夹下,有的工程很大,C盘容易装满。0bccc980-6713-11ee-9788-92fbcf53809c.png0be02e1c-6713-11ee-9788-92fbcf53809c.png 按以上的方式创建了一个工程,这时候我们就要选择我们在anaconda里面安装的环境,在界面的右下角0bfc3da0-6713-11ee-9788-92fbcf53809c.png 按照如图中的选项选择我们在anaconda中创建的深度学习环境,可以看到有pytorch环境。0c0de6fe-6713-11ee-9788-92fbcf53809c.png

此时刚刚的右下角已经有了我们刚刚选择的pytorch环境中的python了。0c2a7f80-6713-11ee-9788-92fbcf53809c.png      我们在创建的工程里面创建一个python脚本,在脚本中运行如下代码,查看是否anconda在安装pytorch环境的时候也安装了cuda和cudnn。

importtorch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())

可以发现控制台打印出两个True,可以说明cuda和cudnn已经安装。并且可以得到cuda的版本为10.2和cudnn的版本为7.6.5版本。0c401dfe-6713-11ee-9788-92fbcf53809c.png

至此我们的深度学习环境安装就已经完全完成。接下来可以在相应的环境下进行深度学习的实验了。

最后还要申明一下,你可以创建不同的环境,在里面安装不同版本的cuda和cudnn版本。已经亲自尝试过了,是可以的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128902
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121118
  • pytorch
    +关注

    关注

    2

    文章

    808

    浏览量

    13202
收藏 人收藏

    评论

    相关推荐

    Docker运行环境安装

    、发布、测试和部署,可以帮助开发人员将最新版本代码应用到生产环境中。 Docker可以安装在多个平台中,包括Mac、Windows和Linux。不过,生产环境还是推荐在Linux上运行,以下以主流的Linux操作系统(CentO
    的头像 发表于 10-29 11:28 205次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 198次阅读
    <b class='flag-5'>Pytorch</b><b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    怎么区分不同射频接头的安装方式

    射频转接器的种类很多,安装方式也各不相同,不同的安装方式适用于不同的使用环境。本文小编会教大家区分常用的多种射频接头的安装方式,帮您在挑选接头时更加得心应手。
    的头像 发表于 08-26 15:58 611次阅读

    pycharm配置pytorch运行环境

    PyCharm中配置PyTorch运行环境主要包括安装PyCharm安装Python(如果尚
    的头像 发表于 08-01 16:25 1594次阅读

    pytorch怎么在pycharm中运行

    第一部分:PyTorchPyCharm安装 1.1 安装PyTorch PyTorch是一个
    的头像 发表于 08-01 16:22 1388次阅读

    pycharm如何调用pytorch

    引言 PyTorch是一个开源的机器学习库,广泛用于计算机视觉、自然语言处理等领域。PyCharm是一个流行的Python集成开发环境(IDE),提供了代码编辑、调试、测试等功能。将
    的头像 发表于 08-01 15:41 592次阅读

    pycharm怎么配置pytorch环境

    1. 安装PyCharm 首先,确保您已经安装PyCharmPyCharm是JetBrains公司开发的一款流行的Python集成开发
    的头像 发表于 08-01 15:40 1066次阅读

    pytorch环境搭建详细步骤

    PyTorch作为一个广泛使用的深度学习框架,其环境搭建对于从事机器学习深度
    的头像 发表于 08-01 15:38 800次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为一种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要
    的头像 发表于 07-16 18:29 1003次阅读

    pycharm如何训练机器学习模型

    PyCharm是一个流行的Python集成开发环境(IDE),它提供了丰富的功能,包括代码编辑、调试、测试等。在本文中,我们将介绍如何在PyCharm中训练机器学习模型。 一、
    的头像 发表于 07-11 10:14 785次阅读

    pycharm进行python爬虫的步骤

    以下是使用PyCharm进行Python爬虫的步骤: 安装PyCharm和Python 首先,您需要安装PyCharm和Python。
    的头像 发表于 07-11 10:11 828次阅读

    pycharm怎么训练数据集

    在本文中,我们将介绍如何在PyCharm中训练数据集。PyCharm是一款流行的Python集成开发环境,提供了许多用于数据科学和机器学习的工具。 1.
    的头像 发表于 07-11 10:10 630次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度
    的头像 发表于 07-02 14:04 956次阅读

    PyTorchPyCharm的区别

    在深入探讨PyTorchPyCharm的区别时,我们首先需要明确两者在计算机科学和数据科学领域中的不同定位和功能。PyTorch是一个开源的深度
    的头像 发表于 07-02 12:36 3015次阅读

    鸿蒙TypeScript入门学习第2天【TypeScript安装

    本文介绍 TypeScript 环境安装。 我们需要使用到 npm 工具安装,如果你还不了解 npm,可以参考我之前文档。
    的头像 发表于 03-27 15:22 506次阅读
    鸿蒙TypeScript入门<b class='flag-5'>学习</b>第2天【TypeScript<b class='flag-5'>安装</b>】