0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高压功率MOSFET外延层对导通电阻的作用

松哥电源 来源:松哥电源 2023-10-07 09:57 次阅读

1、超级结构

高压功率MOSFET管早期主要为平面型结构,采用厚低掺杂的N-外延层epi,保证器件具有足够击穿电压,低掺杂N-外延层epi尺寸越厚,耐压额定值越大,但是,导通电阻随电压以2.4-2.6次方增长,导通电阻急剧增大,电流额定值降低。为了获得低导通电阻值,就必须增大硅片面积,需要更大晶片面积降低导通电阻,一些大电流应用需要更大封装尺寸,成本随之增加,Crss电容增加导致开关损耗增加,系统功率密度很难提高,应用受到很大限制。

高压功率MOSFET外延层对导通电阻起主导作用,要保证高压功率MOSFET管具有足够击穿电压,同时,降低导通电阻,最直观方法就是:

(1)在器件导通时,形成一个较高掺杂N区,作为功率MOSFET管导通的电流通路;

(2)在器件关断时,去除较高掺杂N区的载流子,方法就是使用PN进行耗尽,保证要求耐压等级。

按照上面原理,将平面结构的P-体区结构一直向下,直到几乎贯穿整个外延层,就可以实现上述要求。超结结构Super Junction高压功率MOSFET管就是基本这种设计思路,这种结构主要特点是几乎贯穿整个芯片厚度P柱和内建横向电场,这种结构在学术上称为超结结构。

6bad5c26-62a8-11ee-939d-92fbcf53809c.jpg

(a)平面结构P区下移(b)超结结构

1内建横向电场超结结构

超结结构中,垂直导电N区夹在两边P柱中间,水平方向,N区和P柱二侧都形成PN结;垂直方向,P柱底部和下面外延epi层N形成PN结,栅极下面P区形成反型层产生导电沟道。功率MOSFET管关断时,P柱和垂直导电N形成PN结反向偏置,PN结二侧都会形成耗尽层,建立水平横向电场,这个电场为矩形电场。耗尽层增大,横向水平电场也增大。

随着外加反向偏置电压增大,垂直导电N区和P柱内耗尽层宽度不断增加,直到垂直导电N区和P柱整个区域基本上全部耗尽,几乎全部变成耗尽层,耗尽层横向矩形电场达到非常高幅值,具有非常高的纵向阻断电压。和平面结构对比,横向电场将外延层N-三角形电场变成梯形或矩形电场,提高器件耐压。因此,同样耐压可以减薄器件外延层N-厚度,降低导通电阻。此外,P柱底部与和它相接触外延层N-也形成PN结,反向偏置形时,产生耗尽层,形成垂直电场,进一步提高器件耐压。

6bd02792-62a8-11ee-939d-92fbcf53809c.jpg

图2 超结结构内部电场

MOSFET导通时,栅极和源极电场导致栅极氧化层下部P区反型,形成N型导电沟道;源极区电子通过导电沟道进入垂直N区,中和N区正电荷空穴,垂直N区耗尽层宽度不断降低,直到垂直N区恢复到初始状态。初始状态垂直N区掺杂浓度高,电阻率低,因此导电电流通路导通电阻低。

比较平面结构和沟槽结构功率MOSFET管,超结结构实际综合了平面型和沟槽型结构两者特点,在平面型结构中开出一个低阻抗电流通路沟槽,因此具有平面型结构高耐压和沟槽型结构低电阻特性。内建横向电场高压超结结构,克服了平面高压功率MOSFET管缺点,其工作频率高,导通损耗小,同样面积芯片,可以设计更低导通电阻,因此具有更大额定电流值。

超结结构高压功率MOSFET管需要制作贯穿整个芯片厚度P柱,生产工艺比较复杂,单元一致性较差,雪崩能量不容易控制;超结结构必须严格控制P柱区与外延层N区浓度和宽度,否则二侧不对称耗尽导致中间电荷不平衡,影响超结结构耐压。外延层N掺杂浓度越高,影响越大。

降低漂移区厚度,提高漂移区掺杂浓度,以及降低单元Pitch尺寸,可以进一步降低导通电阻。但是,降低单元Pitch尺寸,必须增加N漂移区掺杂浓度,就必须对N漂移区和P柱区进行精确补偿,必须非常严格控制它们掺杂浓度和宽度。耗尽电荷平衡偏差越大,电压阻断能力损失就越严重,器件雪崩能力和单元一致性越差,对生产工艺和威廉希尔官方网站 要求就更加苛刻。

有些中压功率MOSFET管也采用超结威廉希尔官方网站 ,降低导通电阻,同时使用较大Pitch尺寸,减少单元相互之间加热效应和电流集中影响,不容易形成局部热点Hot Spot,提高线性区性能。中压功率MOSFET管超结威廉希尔官方网站 ,除了采用前面P柱超结结构,还可以使用深沟槽工艺的场板结构。深沟槽场板尺寸,贯穿芯片厚度大部分尺寸,并不完全贯穿芯片整个厚度,在沟槽表面制作氧化层,里面填充多晶硅,多晶硅连接到源极,氧化层隔离多晶硅和N-漂移层。

这种结构相当于在N-漂移层内设计一个隔离场板,隔离场板可以提供移动电荷,器件漏极和源极加上电压阻断时,补偿横向的N-漂移层电子。隔离场板沟槽底部氧化层,承受器件全部漏极和源极阻断电压,其电场强度非常高,因此,沟槽底部氧化层工艺要精确控制,避免沟槽底部局部区域氧化层变薄和防止应力造成局部缺陷产生。

6beb5850-62a8-11ee-939d-92fbcf53809c.jpg

(a)两侧场板(b)中间场板

图3 超结场板结构

超结结构纵向电场几乎是均匀分布,隔离场板结构纵向电场分布有2个峰值,1个电场峰值在P体区和N-漂移区PN结;另1个电场峰值在在场板沟槽底部。200V以下中压功率MOSFET管可以采用这种场板超结威廉希尔官方网站 。

新一代超结工艺进一步减小器件晶胞尺寸,沟道和晶胞宽度进一步缩小,两个P柱之间距离非常小,难以形成满足要求的沟道区,因此,采用沟道与P柱相垂直的结构,从而减少沟道区工艺加工难度。

6c00c0f0-62a8-11ee-939d-92fbcf53809c.jpg

图4 沟道与P柱垂直结构

2、超级结构生产工艺

超结P柱结构和场板结构,生产加工工艺主要有2种方式:

(1)通过一层一层多次外延生长,得到P柱结构或场板结构。

在衬底上外延一定浓度N层,在P柱区域开窗口注入形成P层,然后重复这些工艺,反复多次外延和注入,最后形成超结结构。也可以先在衬底上外延浓度较低N-层,分别在N区和P柱区域采用注入形成N层和P层,然后重复这些工艺,反复多次外延和注入,最后形成超结结构,这种方法均匀性控制更好,增加一次光刻与注入的工艺,成本增加。

6c22f206-62a8-11ee-939d-92fbcf53809c.jpg

(a)单杂质注入

6c37aa7a-62a8-11ee-939d-92fbcf53809c.jpg

(b) 双杂质注入

6c4cfb1e-62a8-11ee-939d-92fbcf53809c.jpg

(c)单杂质注入 (d)双杂质注入

图5 多层外延工艺

多层外延工艺每次外延层厚度非常薄,外延形成厚度相对固定,超结结构的尺寸偏差小,外延层质量容易控制,缺陷与界面态少。随着器件耐压增大,外延次数和层数增加,而且外延时间长,效率低,导致成本增加。

2)、直接开沟槽填充,即深沟槽威廉希尔官方网站 Deep Trench,得到P柱结构或场板结构。

衬底和外延加工好后,在外延层刻蚀出深沟槽,沟槽的深宽比具有一定限制,然后在沟槽内部填充掺杂。可以在沟槽内外延填充P型材料,然后平坦化抛光,形成P住结构;也可以在沟槽侧壁形成薄氧化层结构,再填充多晶硅形成场板结构。另外,使用更宽的沟槽,采用外延或倾斜注入方式,在沟槽内部依附沟槽侧壁,依次形成P和N型区交错结构。

6c7a731e-62a8-11ee-939d-92fbcf53809c.jpg

(a) 直接填充

6c923562-62a8-11ee-939d-92fbcf53809c.jpg

(b) 宽沟槽侧壁注入、气相沉积与外延

图6 沟槽填充工艺

衬底和外延加工好后,在外延层(耐压层)中刻蚀出具有一定深宽比的沟槽,然后在沟槽内部填充掺杂。通常,有4种填充掺杂方式:一是在沟槽内外延填充P型材料,然后采用化学机械抛光平坦化。另外,可以在沟槽中直接通过P型杂质扩散形成P住;同时,还可以在沟槽内的侧壁上形成薄氧化层结构,再填充多晶硅形成场板结构。二是使用非常宽的沟槽,采用倾斜注入方式,同时控制N和P型杂质的注入剂量,分别在沟槽的侧壁上形成N区和P区,依次制作出P和N型区交错结构。三是通过在沟槽侧壁通过气相掺杂形成P型区。四是在沟槽侧壁选择性外延薄层N与P型,形成超结结构。

多次外延工艺相对容易控制,工艺步骤多,成本高;深沟槽工艺成本低,生产效率高,更容易实现较小的深宽比,形成的超结N区与P区掺杂分布均匀,导通电阻和寄生电容更低;但是,深沟槽工艺不容易保证沟槽内性能一致性,特别是深沟槽填充时,要保证沟槽侧面(侧壁)N和P区交界面没有空隙和孔洞,工艺要求特别高。侧壁出现空隙和孔洞,对性能影响在生产线最后检测中无法通过静态参数测量进行删选。

威廉希尔官方网站 平台不一样,工艺不一样,超结结构Pitch尺寸和芯片厚度也不相同。

6ca96d7c-62a8-11ee-939d-92fbcf53809c.jpg

(a) 多层外延Multiple EPI

6cc4678a-62a8-11ee-939d-92fbcf53809c.jpg

(b) 深沟槽直接填充Deep Trench Filling

图7 超结结构的截面图

3、超级结构开关工作过程

超结型结构工作原理及开关工作过程如下。

(1)关断状态

垂直导电N区夹在两边P区中间,MOSFET关断时,栅极电压为0,栅极下面的P区不能形成反型层,没有导电沟道。P柱区和垂直导电N区二侧横向形成反向偏置PN结,左边P柱区和中间垂直导电N区形成PN结反向偏置,右边P柱区和中间垂直导电N区形成PN结反向偏置,PN结耗尽层增大,并建立横向水平电场。反向电压足够高时,P柱区底部和外延层N区也会形成PN结反向偏置,有利于产生更宽耗尽层,增加垂直电场。

中间垂直导电N区渗杂浓度和宽度控制得合适,就可以将其完全耗尽,这样中间垂直导电N区就没有自由电荷,内部形成横向矩形电场,且电场幅值非常高,只有外部电压大于内部横向电场,才能将其击穿,所以,这个区域耐压非常高。

6ce5dcbc-62a8-11ee-939d-92fbcf53809c.jpg

(a) 开始建立耗尽层(b) 完全耗尽

图8 横向电场及耗尽层建立

(2)开通状态

栅极加上驱动电压时,栅极表面将积累正电荷,同时,吸引栅极氧化层下面P区内部电子到P区上表面,将P区上表面空穴中和,形成耗尽层。随着栅极电压提高,栅极表面正电荷增强,进一步吸引P区内部更多电子到P区上表面,这样,在P区上表面薄层,积累负电荷(电子)形成N型反型层,构成电流通道,即沟道。由于更多负电荷在P区上表面积累,一些负电荷将扩散进入原来完全耗尽垂直导电N区,横向耗尽层宽度越来越减小,横向电场也越来越小。栅极电压进一步提高,栅极氧化层下面P区更宽范围形成N型反型层沟道,电子不断流入垂直导电N区,垂直导电N区回到初始渗杂状态,形成低导通电阻的电流路径。

6d102fbc-62a8-11ee-939d-92fbcf53809c.jpg

(a) VGS加正电压(b) VGS增加形成反型层

6d292e04-62a8-11ee-939d-92fbcf53809c.jpg

(c) VGS增加沟道建立(d) 沟道加宽完全导通

图9 超结结构导通过程

4、高压浮岛结构

另外还有一种介于平面和超结结构中间类型,这种结构内部P区被N-外延层包围,称为P型浮岛结构,电流密度低于超结型,高于普通平面工艺,抗雪崩能力强于超结结构。

6d427cce-62a8-11ee-939d-92fbcf53809c.jpg

图10 浮岛结构

这种结构工作原理是在内部浮岛P区和N-外延层交接处形成耗尽层,将N-外延层三角形电场在中间位置提升,从而提高耐压,这样可以适当减薄N-外延层厚度,降低导通电阻。

P型浮岛需要在N-外延层内部开出较深沟槽,形成P型浮岛结构,然后,沟槽里面填充多晶硅,连接到源极,沟槽深度并没有贯穿整个芯片厚度。沟槽深度越深,P型浮岛结构数量越多,耐压越高,但成本增加。

制作过程使用多次外延或深沟槽工艺,多次外延层数远少于超结结构,浮岛结构P型掺杂浓度控制没有超结严格,只要保证在反向偏压下不完全耗尽就可以,工艺成本低于超结结构;另外,正向导通时,P型浮岛浮空,不会向N-外延层注入非平衡少子,二极管特性好于超结结构。

审核编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电阻
    +关注

    关注

    86

    文章

    5498

    浏览量

    171840
  • MOSFET
    +关注

    关注

    146

    文章

    7138

    浏览量

    213027
  • 电容
    +关注

    关注

    99

    文章

    6026

    浏览量

    150203
  • 高压功率管
    +关注

    关注

    0

    文章

    2

    浏览量

    4552

原文标题:功率MOSFET基本结构:超结结构

文章出处:【微信号:adlsong2016,微信公众号:松哥电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    IR推出低通电阻的车用功率MOSFET AUIRFR4292和AUIRFS6535

    国际整流器公司 (International Rectifier,简称IR) 推出具备低通电阻的AUIRFR4292和AUIRFS6535车用功率MOSFET,适用于汽油和柴油发动机
    发表于 08-15 11:25 1519次阅读

    IR推出具有基准通电阻的全新300V功率MOSFET

    IR近日推出配备IR最新功率MOSFET的300V器件系列,可为各种高效工业应用提供基准通电阻 (Rds(on)) ,全新功率
    发表于 01-22 13:27 1333次阅读

    功率MOSFET结构及特点

    MOSFET和开关频率不太高的中压功率MOSFET。如果需要低的通电阻,只有增大的晶片面积,晶片的面积受到封装尺寸的限制,因此不适合于一些
    发表于 10-10 10:58

    三分钟读懂超级结MOSFET

    对总的通电阻起主导作用,要想保证高压功率MOSFET
    发表于 08-09 17:45

    超级结MOSFET的优势

    MOSFET的结构高压功率MOSFET外延对总的
    发表于 10-17 16:43

    浅析降低高压MOS管通电阻的原理与方法

    则是总通电阻的96.5%。由此可以推断耐压800V的MOS管的通电阻将几乎被外延
    发表于 11-01 15:01

    海飞乐威廉希尔官方网站 现货替换IXFH26N50P场效应管

    MOSFET外延电阻则是总通电阻的96.5%。由此可以推断耐压800V的
    发表于 03-31 17:08

    降低高压MOSFET通电阻的原理与方法

    不能降低高压MOSFET通电阻,所剩的思路就是如何将阻断高电压的低掺杂、高电阻率区域和导电通道的高掺杂、低
    发表于 02-27 11:52

    通电阻,通电阻的结构和作用是什么?

    通电阻,通电阻的结构和作用是什么? 传统模拟开关的结构如图1所示,它由N沟道MOSFET
    发表于 03-23 09:27 5295次阅读

    IR推出汽车专用MOSFET系列低通电阻

    IR推出汽车专用MOSFET系列低通电阻 全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 推出首款汽车专用
    发表于 04-09 11:50 825次阅读

    MOSFET通电阻的概念及应用场合介绍

    MOSFET通电阻
    的头像 发表于 08-14 00:12 1.3w次阅读

    降低高压MOSFET通电阻的原理与方法

    功率半导体器件中,MOSFET以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。在低压领域,
    发表于 03-17 09:35 3225次阅读

    外延的掺杂浓度对SiC功率器件的重要性

    控制外延的掺杂类型和浓度对 SiC 功率器件的性能至关重要,它直接决定了后续器件的比通电阻,阻断电压等重要的电学参数。
    的头像 发表于 04-11 13:44 7241次阅读

    平面栅和沟槽栅的MOSFET通电阻构成

    两者因为其栅极都是在外延表面生长出来的平面结构所以都统称为平面栅MOSFET。还有另外一种结构是把栅极构建在结构内部,挖出来的沟槽里面,叫做沟槽型MOSFET。针对两种不同的结构,对其
    发表于 06-25 17:19 3589次阅读
    平面栅和沟槽栅的<b class='flag-5'>MOSFET</b>的<b class='flag-5'>导</b><b class='flag-5'>通电阻</b>构成

    功率MOSFET基本结构:超结结构

    高压功率MOSFET管早期主要为平面型结构,采用厚低掺杂的N-外延epi,保证器件具有足够击穿电压,低掺杂N-
    的头像 发表于 11-04 08:46 3556次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>MOSFET</b>基本结构:超结结构