0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CPU缓存那些事儿

dyquk4xk2p3d 来源:CSDN 2023-09-10 10:57 次阅读

	

	

	

CPU高速缓存集成于CPU的内部,其是CPU可以高效运行的成分之一,本文围绕下面三个话题来讲解CPU缓存的作用:

  • 为什么需要高速缓存?

  • 高速缓存的内部结构是怎样的?

  • 如何利用好cache,优化代码执行效率?

为什么需要高速缓存?

在现代计算机的体系架构中,为了存储数据,引入了下面一些元件

  • 1.CPU寄存器

  • 2.CPU高速缓存

  • 3.内存

  • 4.硬盘

从1->4,速度越来越慢,价格越来越低,容量越来越大。这样的设计使得一台计算机的价格会处于一个合理的区间,使得计算机可以走进千家万户。

由于硬盘的速度比内存访问慢,因此我们在开发应用软件时,经常会使用redis/memcached这样的组件来加快速度。

而由于CPU和内存速度的不同,于是产生了CPU高速缓存。

下面这张表反应了CPU高速缓存和内存的速度差距。

存储器类型

时钟周期

L1 cache

4

L2 cache

11

L3 cache

24

内存

167

通常cpu内有3级缓存,即L1、L2、L3缓存。其中L1缓存分为数据缓存指令缓存,cpu先从L1缓存中获取指令和数据,如果L1缓存中不存在,那就从L2缓存中获取。每个cpu核心都拥有属于自己的L1缓存和L2缓存。如果数据不在L2缓存中,那就从L3缓存中获取。而L3缓存就是所有cpu核心共用的。如果数据也不在L3缓存中,那就从内存中获取了。当然,如果内存中也没有那就只能从硬盘中获取了。

683ef7ee-4f7e-11ee-a25d-92fbcf53809c.png

对这样的分层概念有了了解之后,就可以进一步的了解高速缓存的内部细节。

高速缓存的内部结构

CPU Cache 在读取内存数据时,每次不会只读一个字或一个字节,而是一块块地读取,这每一小块数据也叫CPU 缓存行(CPU Cache Line)。这也是对局部性原理的运用,当一个指令或数据被拜访过之后,与它相邻地址的数据有很大概率也会被拜访,将更多或许被拜访的数据存入缓存,可以进步缓存命中率。

cache line 又分为多种类型,分别为直接映射缓存多路组相连缓存全相连缓存

下面依次介绍。

直接映射缓存

直接映射缓存会将一个内存地址固定映射到某一行的cache line。

其思想是将一个内存地址划分为三块,分别是Tag, Index,Offset(这里的内存地址指的是虚拟内存)。将cacheline理解为一个数组,那么通过Index则是数组的下标,通过Index就可以获取对应的cache-line。再获取cache-line的数据后,获取其中的Tag值,将其与地址中的Tag值进行对比,如果相同,则代表该内存地址位于该cache line中,即cache命中了。最后根据Offset的值去data数组中获取对应的数据。整个流程大概如下图所示:

685a8a40-4f7e-11ee-a25d-92fbcf53809c.png

下面是一个例子,假设cache中有8个cache line,

686da8a0-4f7e-11ee-a25d-92fbcf53809c.png

对于直接映射缓存而言,其内存和缓存的映射关系如下所示:

688dff88-4f7e-11ee-a25d-92fbcf53809c.jpg

从图中我们可以看出,0x00,0x40,0x80这三个地址,其地址中的index成分的值是相同的,因此将会被加载进同一个cache line。

试想一下如果我们依次访问了0x00,0x40,0x00会发生什么?

当我们访问0x00时,cache miss,于是从内存中加载到第0行cache line中。当访问0x40时,第0行cache line中的tag与地址中的tag成分不一致,因此又需要再次从内存中加载数据到第0行cache line中。最后再次访问0x00时,由于cache line中存放的是0x40地址的数据,因此cache再次miss。可以看出在这个过程中,cache并没有起什么作用,访问了相同的内存地址时,cache line并没有对应的内容,而都是从内存中进行加载。

这种现象叫做cache颠簸(cache thrashing)。针对这个问题,引入多路组相连缓存。下面一节将讲解多路组相连缓存的工作原理

多路组相连缓存

多路组相连缓存的原理相比于直接映射缓存复杂一些,这里将以两路组相连这种场景来进行讲解。

所谓多路就是指原来根据虚拟的地址中的index可以唯一确定一个cache line,而现在根据index可以找到多行cache line。而两路的意思就是指通过index可以找到2个cache line。在找到这个两个cache line后,遍历这两个cache line,比较其中的tag值,如果相等则代表命中了。

68bf3fda-4f7e-11ee-a25d-92fbcf53809c.png

下面还是以8个cache line的两路缓存为例,假设现在有一个虚拟地址是0000001100101100,其tag值为0x19,其index为1,offset为4。那么根据index为1可以找到两个cache line,由于第一个cache line的tag为0x10,因此没有命中,而第二个cache line的tag为0x19,值相等,于是cache命中。

68d78572-4f7e-11ee-a25d-92fbcf53809c.png

对于多路组相连缓存而言,其内存和缓存的映射关系如下所示:

68f6d6d4-4f7e-11ee-a25d-92fbcf53809c.jpg

由于多路组相连的缓存需要进行多次tag的比较,对于比直接映射缓存,其硬件成本更高,因为为了提高效率,可能会需要进行并行比较,这就需要更复杂的硬件设计。

另外,如何cache没有命中,那么该如何处理呢?

以两路为例,通过index可以找到两个cache line,如果此时这两个cache line都是处于空闲状态,那么cache miss时可以选择其中一个cache line加载数据。如果两个cache line有一个处于空闲状态,可以选择空闲状态的cache line 加载数据。如果两个cache line都是有效的,那么则需要一定的淘汰算法,例如PLRU/NRU/fifo/round-robin等等。

这个时候如果我们依次访问了0x00,0x40,0x00会发生什么?

当我们访问0x00时,cache miss,于是从内存中加载到第0路的第0行cache line中。当访问0x40时,第0路第0行cache line中的tag与地址中的tag成分不一致,于是从内存中加载数据到第1路第0行cache line中。最后再次访问0x00时,此时会访问到第0路第0行的cache line中,因此cache就生效了。由此可以看出,由于多路组相连的缓存可以改善cache颠簸的问题。

全相连缓存

从多路组相连,我们了解到其可以降低cache颠簸的问题,并且路数量越多,降低cache颠簸的效果就越好。那么是不是可以这样设想,如果路数无限大,大到所有的cache line都在一个组内,是不是效果就最好?基于这样的思想,全相连缓存相应而生。

6925f4fa-4f7e-11ee-a25d-92fbcf53809c.png

下面还是以8个cache line的全相连缓存为例,假设现在有一个虚拟地址是0000001100101100,其tag值为0x19,offset为4。依次遍历,直到遍历到第4行cache line时,tag匹配上。

693e543c-4f7e-11ee-a25d-92fbcf53809c.jpg

全连接缓存中所有的cache line都位于一个组(set)内,因此地址中将不会划出一部分作为index。在判断cache line是否命中时,需要遍历所有的cache line,将其与虚拟地址中的tag成分进行对比,如果相等,则意味着匹配上了。因此对于全连接缓存而言,任意地址的数据可以缓存在任意的cache line中,这可以避免缓存的颠簸,但是与此同时,硬件上的成本也是最高。

如何利用缓存写出高效率的代码?

看下面这个例子,对一个二维数组求和时,可以进行按行遍历和按列遍历,那么哪一种速度会比较快呢?

const int row = 1024;
const int col = 1024;
int matrix[row][col];

//按行遍历
int sum_row = 0;
for (int r = 0; r < row; r++) {
    for (int c = 0; c < col; c++) {
        sum_row += matrix[r][c];
    }
}

//按列遍历
int sum_col = 0;
for (int c = 0; c < col; c++) {
    for (int r = 0; r < row; r++) {
        sum_col += matrix[r][c];
    }
}

我们分别编写下面的测试代码,首先是按行遍历的时间:

#include 
#include 
const int row = 1024;
const int col = 1024;
int matrix[row][col];

//按行遍历
int main(){
    for (int r = 0; r < row; r++) {
        for (int c = 0; c < col; c++) {
            matrix[r][c] = r+c;
        }
    }
    auto start = std::now();
    
    //按行遍历
    int sum_row = 0;
    for (int r = 0; r < row; r++) {
        for (int c = 0; c < col; c++) {
            sum_row += matrix[r][c];
        }
    }

    auto finish = std::now();
    auto duration = std::duration_cast<std::milliseconds>(finish - start);
    std::cout << duration.count() << "ms" << std::endl;
}

标准输出打印了:2ms

接着是按列遍历的测试代码:

#include 
#include 
const int row = 1024;
const int col = 1024;
int matrix[row][col];

//按行遍历
int main(){
    for (int r = 0; r < row; r++) {
        for (int c = 0; c < col; c++) {
            matrix[r][c] = r+c;
        }
    }
    auto start = std::now();
    
    //按列遍历
    int sum_col = 0;
    for (int c = 0; c < col; c++) {
        for (int r = 0; r < row; r++) {
            sum_col += matrix[r][c];
        }
    }

    auto finish = std::now();
    auto duration = std::duration_cast<std::milliseconds>(finish - start);
    std::cout << duration.count() << "ms" << std::endl;
}

标准输出打印了:8ms

答案很明显了,按行遍历速度比按列遍历快很多。

原因就是按行遍历时, 在访问matrix[r][c]时,会将后面的一些元素一并加载到cache line中,那么后面访问matrix[r][c+1]和matrix[r][c+2]时就可以命中缓存,这样就可以极大的提高缓存访问的速度。

如下图所示,在访问matrix[0][0]时,matrix[0][1],matrix[0][2],matrix[0][2]也被加载进了高速缓存中,因此随后遍历时就可以用到缓存。

694f9e2c-4f7e-11ee-a25d-92fbcf53809c.jpg

而按列遍历时,访问完matrix[0][0]之后,下一个要访问的数据是matrix[1][0],不在高速缓存中,于是需要再次访问内存,这就使得程序的访问速度相较于按行缓存会慢很多。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10845

    浏览量

    211471
  • 内存
    +关注

    关注

    8

    文章

    3011

    浏览量

    73969
  • 数组
    +关注

    关注

    1

    文章

    416

    浏览量

    25935

原文标题:CPU缓存那些事儿

文章出处:【微信号:良许Linux,微信公众号:良许Linux】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Linux内存的那些事儿

    CPU、IO、磁盘、内存,可以说是影响计算机性能的几大关键因素。今天,我们就来探究一下内存的那些事儿
    发表于 09-08 14:16 747次阅读

    NIOSII那些事儿REV7.0

    NIOSII那些事儿REV7.0
    发表于 03-07 11:54

    mos管的那些事儿分享!

    通俗易懂,百度上要下载券,我直接在其他网站下了,在这里发出来,备用。MOS管的那些事儿.rar (1.33 MB )
    发表于 08-28 00:43

    CPU缓存对性能的影响

      说到CPU,不得不说的就是CPU缓存,目前CPU缓存已经成了衡量CPU性能的一个必要指标,
    发表于 11-13 17:58 2472次阅读

    电源选型的那些事儿

    电路教程相关知识的资料,关于电源选型的那些事儿
    发表于 10-10 14:34 0次下载

    Linux那些事儿linux的入门介绍

    电子发烧友网站提供《Linux那些事儿linux的入门介绍.pdf》资料免费下载
    发表于 05-02 08:00 4次下载

    Linux的那些事儿之我是Sysfs

    Linux的那些事儿之我是Sysfs
    发表于 10-29 09:28 5次下载
    Linux的<b class='flag-5'>那些</b><b class='flag-5'>事儿</b>之我是Sysfs

    Linux的那些事儿之我是SCSI硬盘

    Linux的那些事儿之我是SCSI硬盘
    发表于 10-29 09:32 19次下载
    Linux的<b class='flag-5'>那些</b><b class='flag-5'>事儿</b>之我是SCSI硬盘

    Linux的那些事儿之我是PCI

    Linux的那些事儿之我是PCI
    发表于 10-29 09:35 10次下载
    Linux的<b class='flag-5'>那些</b><b class='flag-5'>事儿</b>之我是PCI

    Linux的那些事儿之我是Hub

    Linux的那些事儿之我是Hub
    发表于 10-29 09:37 7次下载
    Linux的<b class='flag-5'>那些</b><b class='flag-5'>事儿</b>之我是Hub

    Linux的那些事儿之我是Block层

    Linux的那些事儿之我是Block层
    发表于 10-29 09:43 9次下载
    Linux的<b class='flag-5'>那些</b><b class='flag-5'>事儿</b>之我是Block层

    CPU缓存是什么意思_CPU缓存有什么作用

    由于处理器是核心硬件,相信我们在选择处理器的时候都会去关心处理器参数方面,而在处理器核心参数中,我们经常会看到缓存(Cache)这个参数,那么CPU缓存有什么作用呢?下面小编科普一下关于CP
    发表于 05-19 09:24 7601次阅读

    缓存如何工作,如何设计CPU缓存

    20世纪80年代,CPU性能有了显著提升,但这受到板载内存访问速度缓慢增长的阻碍。随着这种差异的恶化,工程师们发现了一种通过新的英国威廉希尔公司网站 缓存来解决问题的方法。本文将帮助你进一步了解什么是缓存,它如何工作以及如何设计
    的头像 发表于 11-19 17:23 2726次阅读

    CPU缓存的作用及原理有哪些

    CPU缓存是位于CPU与内存之间的临时存储器,它的容量比内存小很多,但交换速度比内存要快很多。 CPU缓存分为三类:一级
    的头像 发表于 08-27 15:58 1.1w次阅读

    MOS管的那些事儿.课件下载

    MOS管的那些事儿.课件下载
    发表于 12-06 15:14 0次下载