0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

常见的卷积神经网络模型 典型的卷积神经网络模型

工程师邓生 来源:未知 作者:刘芹 2023-08-21 17:11 次阅读

常见的卷积神经网络模型 典型的卷积神经网络模型

卷积神经网络(Convolutional Neural Network, CNN)是深度学习中最流行的模型之一,其结构灵活,处理图像、音频、自然语言等各种任务表现出色。在本文中,我们将介绍常见的卷积神经网络模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。

1. LeNet

LeNet是卷积神经网络的开山祖师,是由Yan LeCunn在1998年提出的经典卷积神经网络模型。它最初是为手写体数字识别而设计的,由卷积层、池化层和全连接层组成。LeNet 的卷积层使用了sigmoid作为激活函数,而池化层使用了平均池化。LeNet是现代卷积神经网络模型的重要里程碑。

2. AlexNet

AlexNet是2012年ImageNet大规模视觉识别挑战赛冠军的模型,它被认为是卷积神经网络发展历史上的分水岭。AlexNet在其时代比之前的LeNet模型更深、更宽,使用了更多的神经元和非线性激活函数ReLU。与LeNet相比,AlexNet还使用了Dropout和数据增强威廉希尔官方网站 ,进一步提高了模型的泛化能力。

3. VGG

VGG是由Karen Simonyan和Andrew Zisserman在2014年提出的模型。VGG网络结构非常简单,由多个卷积层和池化层组成,几乎所有卷积层和池化层的大小都为3×3,同时使用了大量的卷积层。VGG的网络结构深度达到了16或19层,使其在ImageNet比赛中获得了显着的成绩。VGG的一个重要贡献是在卷积神经网络模型的设计中阐明了卷积层和全连接层之间的关系。

4. GoogLeNet

由Google团队开发的GoogLeNet(Inception-v1)是一种极深的网络,其特点在于具有多个不同大小的卷积核和池化的并行模块。GoogLeNet还使用了1×1的卷积层,它可以降低计算量,同时增强了网络的非线性能力。这是GoogLeNet中最大的创新。GoogLeNet结构很深,但它通过将卷积层分解成小卷积层,从而避免了参数过多的问题。

5. ResNet

ResNet是2015年由Kaiming He和他的同事提出的一种深度残差网络。ResNet在深层神经网络训练中解决了梯度消失的问题,使网络具有更高的分类精度。ResNet中使用了残差学习,即通过添加跨层连接,每个残差单元在原有基础上进行学习。这种方法让即使网络非常深,也不会影响网络的收敛,从而让网络可以更好地训练。

6. Inception

Inception由Google机器人科学家Christian Szegedy和团队提出的一种网络结构,其核心思想是在同一层中采用多个不同大小的卷积核和池化威廉希尔官方网站 ,并将它们合并在一起。Inception V1是第一代版本,因其多层结构和特殊设计而成为当时最先进的模型之一。

7. Xception

Xception是谷歌DeepMind在2016年提出的一种高效的卷积神经网络模型。Xception使用了深度可分离卷积层,将卷积层的空间卷积和通道卷积进行分离。通常的卷积层近似于进行了这两个操作的点积,但使用深度可分离卷积可使用更少的参数,同时减少了计算复杂度,提高了模型的性能。

结论:

卷积神经网络是深度学习中最流行的模型之一,已发展出许多经典模型。本文详细介绍了常见的卷积神经网络模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。每个模型都有其独特的设计思想和模型结构,可以根据应用场景选择适合的模型。在未来,卷积神经网络定将在更多领域中实现重要的进展。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    209

    文章

    27513

    浏览量

    202732
  • 卷积神经网络

    关注

    4

    文章

    356

    浏览量

    11761
收藏 人收藏

    评论

    相关推荐

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-03 09:15 129次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积
    的头像 发表于 07-02 16:47 200次阅读

    卷积神经网络的优点

    卷积神经网络的优点  卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络
    的头像 发表于 12-07 15:37 3573次阅读

    卷积神经网络模型的优缺点

    卷积神经网络模型的优缺点  卷积神经网络(Convolutional Neural Network,CNN)是一种从图像、视频、声音和一系列
    的头像 发表于 08-21 17:15 3623次阅读

    卷积神经网络一共有几层 卷积神经网络模型三层

    卷积神经网络一共有几层 卷积神经网络模型三层  卷积神经网络
    的头像 发表于 08-21 17:11 6286次阅读

    卷积神经网络模型搭建

    卷积神经网络模型搭建 卷积神经网络模型是一种深度学习算法。它已经成为了计算机视觉和自然语言处理等
    的头像 发表于 08-21 17:11 767次阅读

    cnn卷积神经网络模型 卷积神经网络预测模型 生成卷积神经网络模型

    cnn卷积神经网络模型 卷积神经网络预测模型 生成卷积
    的头像 发表于 08-21 17:11 964次阅读

    卷积神经网络算法流程 卷积神经网络模型工作流程

    卷积神经网络算法流程 卷积神经网络模型工作流程  卷积神经网
    的头像 发表于 08-21 16:50 2276次阅读

    卷积神经网络的介绍 什么是卷积神经网络算法

    的深度学习算法。CNN模型最早被提出是为了处理图像,其模型结构中包含卷积层、池化层和全连接层等关键威廉希尔官方网站 ,经过多个卷积层和池化层的处理,CNN可以提取出图像中的特征信息,从而对图像进行分
    的头像 发表于 08-21 16:49 1605次阅读

    卷积神经网络层级结构 卷积神经网络卷积层讲解

    卷积神经网络层级结构 卷积神经网络卷积层讲解 卷积神经网络
    的头像 发表于 08-21 16:49 6012次阅读

    卷积神经网络模型训练步骤

    卷积神经网络模型训练步骤  卷积神经网络(Convolutional Neural Network, CNN)是一种常用的深度学习算法,广泛
    的头像 发表于 08-21 16:42 1364次阅读

    卷积神经网络模型原理 卷积神经网络模型结构

    卷积神经网络模型原理 卷积神经网络模型结构  卷积
    的头像 发表于 08-21 16:41 803次阅读

    卷积神经网络模型有哪些?卷积神经网络包括哪几层内容?

    卷积神经网络模型有哪些?卷积神经网络包括哪几层内容? 卷积
    的头像 发表于 08-21 16:41 1699次阅读

    卷积神经网络的应用 卷积神经网络通常用来处理什么

    卷积神经网络的应用 卷积神经网络通常用来处理什么 卷积神经网络(Convolutional Ne
    的头像 发表于 08-21 16:41 4561次阅读

    卷积神经网络原理:卷积神经网络模型卷积神经网络算法

    卷积神经网络原理:卷积神经网络模型卷积神经网络算法
    的头像 发表于 08-17 16:30 1134次阅读