0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络三大特点

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:49 次阅读

卷积神经网络三大特点

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,其具有三大特点:局部感知、参数共享和下采样。

一、局部感知
卷积神经网络是一种基于图像处理的神经网络,它模仿人类视觉结构中的神经元组成,对图像进行处理和学习。在图像处理中,通常将图像看作是二维矩阵,即每个像素点都有其对应的坐标和像素值。卷积神经网络采用卷积操作实现图像的特征提取,具有“局部感知”的特点。

从直觉上理解,卷积神经网络在处理图像时会先提取图像的局部特征,然后将这些局部特征组合成整体的特征表示。这样做的好处是可以保留图像的本地信息,这些信息对于图像识别和分类非常重要。在卷积神经网络中,局部感知的表现形式是滤波器(filter)的概念。滤波器相当于一组权重矩阵,用来计算输入图像某个位置的特征响应,其计算方式为卷积操作。滤波器尺寸一般小于输入图像尺寸,通常使用的常见尺寸为 3×3 或 5×5。

二、参数共享
在卷积神经网络中,参数共享是指某个特征图中的所有神经元使用相同的权值和偏置。对于一张输入图像,经过多次卷积操作后得到了多个特征图,每个特征图中的所有神经元共享同一组权值和偏置。这种参数共享的设计方式能够大大减少模型的参数数量和运算时间,进而提升模型的效率。


参数共享的优势不仅在于模型大小的减小,更重要的是其实现了对不同位置上的局部特征的相同处理。因为图像中相近的局部区域存在相关性,不同位置上的相同滤波器可以共享重复计算的过程,从而大大提高计算效率。

三、下采样
在卷积神经网络中,下采样(pooling)是指在特征映射上定期地探索每个子区域,并简化映射内容,将多个相邻像素的值合并成一个值。下采样有两种常用的方式:最大池化(Max Pooling)和平均池化(Average Pooling)。

1. 最大池化
最大池化是指对某个覆盖区域内的特征值进行取最大值

以 2 × 2 的池化窗口为例,将输入的特征图覆盖成多个子区域,对于每个子区域,最大池化会将四个元素中的最大值作为输出。这种方法可以提取出特征图中的最显著特征,如边缘和角点等。

2. 平均池化
平均池化是指对某个覆盖区域内的特征值进行取平均值,

与最大池化相似,平均池化也会分割输入特征图为多个子区域,不过它会对每个区域中的元素进行平均池化。相对于最大池化,平均池化更加平滑,能够处理合成图像中的噪声和其他无关特征。

总结:
卷积神经网络是一种有效的图像处理和识别模型。其三大特点:局部感知、参数共享和下采样,都是为了提高图像处理和特征提取的效率。卷积神经网络通过局部感知保留了图像的本地信息,通过参数共享大大减少了模型的参数数量和运算时间,通过下采样探索了特征映射上的每个子区域,并对其进行简化,提高了模型的精度和泛化能力。这三大特点的综合运用,使卷积神经网络在图像处理和识别领域大放异彩。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    161

    文章

    7773

    浏览量

    177904
  • 图像处理
    +关注

    关注

    27

    文章

    1286

    浏览量

    56692
  • 卷积神经网络

    关注

    4

    文章

    367

    浏览量

    11863
收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    神经网络,也称为全连接神经网络(Fully Connected Neural Networks,FCNs),其特点是每一层的每个神经元都与下一层的所有
    的头像 发表于 11-15 14:53 270次阅读

    卷积神经网络的基本概念、原理及特点

    的基本概念、原理、特点以及在不同领域的应用情况。 一、卷积神经网络的基本概念 卷积神经网络是一种深度学习算法,它由多层
    的头像 发表于 07-11 14:38 946次阅读

    BP神经网络卷积神经网络的关系

    广泛应用的神经网络模型。它们各自具有独特的特点和优势,并在不同的应用场景中发挥着重要作用。以下是对BP神经网络卷积神经网络关系的详细探讨,
    的头像 发表于 07-10 15:24 1373次阅读

    循环神经网络卷积神经网络的区别

    结构。它们在处理不同类型的数据和解决不同问题时具有各自的优势和特点。本文将从多个方面比较循环神经网络卷积神经网络的区别。 基本概念 循环神经网络
    的头像 发表于 07-04 14:24 1224次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 10:49 522次阅读

    bp神经网络卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络
    的头像 发表于 07-03 10:12 1110次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:40 437次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构、关键威廉希尔官方网站 、常见网络架构以及实际应用案例。 引言 1.1
    的头像 发表于 07-03 09:28 592次阅读

    cnn卷积神经网络特点是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。CNN具有以下特点: 局
    的头像 发表于 07-03 09:26 822次阅读

    卷积神经网络激活函数的作用

    起着至关重要的作用,它们可以增加网络的非线性,提高网络的表达能力,使网络能够学习到更加复杂的特征。本文将详细介绍卷积神经网络中激活函数的作用
    的头像 发表于 07-03 09:18 820次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:15 381次阅读

    卷积神经网络的原理与实现

    核心思想是通过卷积操作提取输入数据的特征。与传统的神经网络不同,卷积神经网络具有参数共享和局部连接的特点,这使得其在处理图像等高维数据时具有
    的头像 发表于 07-02 16:47 541次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络的基
    的头像 发表于 07-02 14:45 1388次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 607次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 3396次阅读