电源PCB设计
VDD_CPU_BIG0/1
如下图(上)所示的滤波电容,原理图上靠近RK3588的VDD_CPU_BIG电源管脚绿线以内的去耦电容,务必放在对应的电源管脚背面,电容GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。
其余的去耦电容尽量摆放在芯片附近,而且需要摆放在电源分割来源的路径上。
RK3588芯片VDD_CPU_BIG0/1的电源管脚,保证每个管脚边上都有一个对应的过孔,并且顶层走“井”字形,交叉连接。
如下图是电源管脚扇出走线情况,建议走线线宽10mil。
VDD_CPU_BIG0/1覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚路径都足够。
VDD_CPU_BIG的电源在外围换层时,要尽可能的多打电源过孔(12个及以上0.5*0.3mm的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。
VDD_CPU_BIG电流比较大需要双层覆铜,VDD_CPU_BIG 电源在CPU区域线宽合计不得小于 300mil,外围区域宽度不小于600mil。
尽量采用覆铜方式降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜),如下图所示。
电源平面会被过孔反焊盘破坏,PCB设计时注意调整其他信号过孔的位置,使得电源的有效宽度满足要求。
下图L1为电源铜皮宽度58mil,由于过孔的反焊盘会破坏铜皮,导致实际有效过流宽度仅为L2+L3+L4=14.5mil。
BIG0/1电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧12个,如下图所示。
BIG电源PDN目标阻抗建议值,如下表和下图所示。
电源PCB设计
VDD_LOGIC
VDD_LOGIC的覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚路径都足够。
如下图(上)所示,原理图上靠近RK3588的VDD_LOGIC电源管脚绿线以内的去耦电容,务必放在对应的电源管脚背面,电容的GND管脚尽量靠近芯片中心的GND管脚放置,如下图(下)所示。
其余的去耦电容尽量摆放在RK3588芯片附近,并摆放在电源分割来源的路径上。
RK3588芯片VDD_LOGIC的电源管脚,每个管脚需要对应一个过孔,并且顶层走“井”字形,交叉连接,如下图所示,建议走线线宽10mil。
BIG0/1电源过孔40mil范围(过孔中心到过孔中心间VDD_LOGIC电源在CPU区域线宽不得小于120mil,外围区域宽度不小于200mil。
尽量采用覆铜方式,降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜),GND过孔数量建议≧12个。
VDD_LOGIC的电源在外围换层时,要尽可能的多打电源过孔(8个以上10-20mil的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用,如下图所示。
电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧11个,如下图所示。
电源PCB设计
VDD_GPU
VDD_GPU的覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。
VDD_GPU 的电源在外围换层时,要尽可能的多打电源过孔(10个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。
如下图(上)所示,原理图上靠近RK3588的VDD_GPU电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。
其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。
RK3588芯片VDD_GPU的电源管脚,每个管脚需要对应一个过孔,并且顶层走“井”字形,交叉连接,如下图所示,建议走线线宽10mil。
VDD_GPU电源在GPU区域线宽不得小于300mil,外围区域宽度不小于500mil,采用两层覆铜方式,降低走线带来压降。
电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧14个,如下图所示。
电源PCB设计
VDD_NPU
VDD_NPU的覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。
VDD_NPU的电源在外围换层时,要尽可能的多打电源过孔(7个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。
如下图(上)所示,原理图上靠RK3588的VDD_NPU电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。
其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。
RK3588芯片VDD_NPU的电源管脚,每个管脚就近有一个对应过孔,并且顶层走“井”字形,交叉连接,如下图所示 ,建议走线线宽10mil。
VDD_NPU电源在NPU区域线宽不得小于300mil,外围区域宽度不小于500mil。
尽量采用覆铜方式,降低走线带来的压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜)。
电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧9个。
电源PCB设计
VDD_CPU_LIT
VDD_CPU_LIT覆铜宽度需满足芯片电流需求,连接到芯片电源管脚的覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。
VDD_CPU_LIT的电源在外围换层时,要尽可能的多打电源过孔(9个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。
如下图(上)所示,原理图上靠近RK3588的VDD_CPU_LIT电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。
其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。
RK3588芯片VDD_CPU_LIT的电源管脚,每个管脚就近有一个对应过孔,并且顶层走“井”字形,交叉连接,如下图建议走线线宽10mil。
VDD_CPU_LIT电源在CPU区域线宽不得小于120mil,外围区域宽度不小于300mil。
采用双层电源覆铜方式,降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜)。
电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧9个。
电源PCB设计
VDD_VDENC
VDD_VDENC覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。
VDD_VDENC电源在外围换层时,要尽可能的多打电源过孔(9个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。
如下图(上)所示,原理图上靠近RK3588的VDD_VDENC电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。
其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。
RK3588芯片VDD_VDENC的电源管脚,每个管脚就近有一个对应过孔,并且顶层走“井”字形,交叉连接,如下图建议走线线宽10mil。
VDD_VDENC电源在CPU区域线宽不得小于100mil,外围区域宽度不小于300mil,采用双层电源覆铜方式,降低走线带来压降。
电源过孔30mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧8个。
电源PCB设计
VCC_DDR
VCC_DDR覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。
路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。
VCC_DDR的电源在外围换层时,要尽可能的多打电源过孔(9个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。
去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。
如下图(上)所示,原理图上靠近RK3588的VCC_DDR电源管脚的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,其余的去耦电容尽量靠近RK3588,如下图(下)所示。
RK3588芯片VCC_DDR的电源管脚,每个管脚需要对应一个过孔,并且顶层走“井”字形,交叉连接,如下图建议走线线宽10mil。
当LPDDR4x 时,链接方式如下图所示。
VCC_DDR电源在CPU区域线宽不得小于120mil,外围区域宽度不小于200mil。
尽量采用覆铜方式,降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜)。
设计完PCB后,一定要做分析检查,才能让生产更顺利,这里推荐一款可以一键智能检测PCB布线布局最优方案的工具:华秋DFM软件,只需上传PCB/Gerber文件后,点击一键DFM分析,即可根据生产的工艺参数对设计的PCB板进行可制造性分析。
华秋DFM软件是国内首款免费PCB可制造性和装配分析软件,拥有300万+元件库,可轻松高效完成装配分析。其PCB裸板的分析功能,开发了19大项,52细项检查规则,PCBA组装的分析功能,开发了10大项,234细项检查规则。
基本可涵盖所有可能发生的制造性问题,能帮助设计工程师在生产前检查出可制造性问题,且能够满足工程师需要的多种场景,将产品研制的迭代次数降到最低,减少成本。
https://dfm.elecfans.com/uploads/software/promoter/HQDFM%20V3.7.0_DFMGZH.zip
专属福利
上方链接下载还可享多层板首单立减50元
每月1次4层板免费打样
并领取多张无门槛“元器件+打板+贴片”优惠券
华秋电子是一家致力于以信息化威廉希尔官方网站 改善传统电子产业链服务模式的产业数智化服务平台,目前已全面打通产业上、中、下游,形成了电子产业链闭环生态,致力于为行业带来“高品质,短交期,高性价比”的一站式服务平台,可向广大客户提供媒体社区平台服务、元器件采购服务、PCB制造服务及可靠性制造分析服务、SMT贴片/PCBA加工服务,如有相关业务需求,请扫码填写以下表单,我们将为您对接专属服务。
原文标题:【华秋干货铺】电源PCB设计汇总
文章出处:【微信公众号:华秋电子】欢迎添加关注!文章转载请注明出处。
-
华秋电子
+关注
关注
19文章
475浏览量
13405
原文标题:【华秋干货铺】电源PCB设计汇总
文章出处:【微信号:huaqiu-cn,微信公众号:华秋电子】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论