谷歌云最近在 Cloud SQL for PostgreSQL 和 AlloyDB for PostgreSQL 中增加了对 pgvector 的支持。这个扩展为托管数据库带来了向量搜索操作,允许开发人员存储大型语言模型(LLM)生成的向量嵌入并执行相似性搜索。
Cloud SQL 和 AlloyDB 现在可以与 Vertex AI 上的生成性 AI 服务配对,帮助创建能够感知应用程序和用户状态的 AI 应用程序。谷歌高级产品经理 Sandhya Ghai 和产品经理 Bala Narasimhan 解释说:
向量嵌入是一种数值表示,通常用于将复杂的用户生成内容(如文本、音频和视频)转换为易于存储、操作和索引的形式。这些表示由嵌入模型生成,如果两个内容在语义上相似,它们各自的嵌入就会在嵌入向量空间中彼此相邻。然后,向量嵌入会被索引,被用于基于相似性进行有效的数据过滤。
例如,开发人员可以使用 Vertex AI 的预训练模型在文本和图像之间生成嵌入,并将它们存储并索引到数据库中,简化查找相似记录的过程。
用户现在可以使用 CREATE EXTENSION 命令在现有的数据库中安装 pgvector 扩展:
postgres=> CREATE EXTENSION IF NOT EXISTS vector;
CREATE EXTENSION
postgres=> CREATE TABLE embeddings(
id INTEGER,
embedding vector(3)
);
CREATE TABLE
postgres=> INSERT INTO embeddings
VALUES
(1, '[1, 0, -1]'),
(2, '[1, 1, 1]'),
(3, '[1, 1, 50]');
INSERT03
正如 Ghai 和 Narasimhan 所解释的那样,这一新功能还可以帮助开发人员利用预训练的 LLM:
我们需要了解的是,LLM 没有状态的概念……嵌入允许你将大型上下文(如文档或历史聊天记录)存储在数据库中,并过滤它们,以便查找最相关的信息。然后,你可以将最相关的聊天历史记录或文档片段输入模型来interwetten与威廉的赔率体系 长期记忆和业务特定知识。
谷歌云发布了一个 Colab Notebook 和一个视频,用 pgvector、开源框架 LangChain 和 LLM 构建 AI 驱动的应用程序。谷歌高级软件工程师 Saket Saurabh 演示了如何在示例 Python 应用程序中添加生成式 AI 功能,他写道:
pgvector 扩展还引入了用于对向量执行相似性匹配的新运算符,你可以用它查找语义上相似的向量。这样的运算符有两个:
‘<->’:返回两个向量之间的欧几里得距离…… ‘<=>’:返回两个向量之间的余弦距离
在过去的几个月中,谷歌云并不是唯一一个瞄准向量数据库的云供应商,Amazon RDS for PostgreSQL 也支持 pgvector 扩展,微软还展示了如何将 Azure Data Explorer(ADX)作为向量数据库,并讨论了几种连接到向量数据库的连接器。
-
连接器
+关注
关注
98文章
14515浏览量
136524 -
AI
+关注
关注
87文章
30879浏览量
269035 -
数据库
+关注
关注
7文章
3799浏览量
64381
原文标题:增强AI能力:谷歌云在托管数据库中集成向量搜索
文章出处:【微信号:AI前线,微信公众号:AI前线】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论