0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何选择超级电容器型号,超级电容器的选购技巧

科技观察员 来源:网络整理 作者:网络整理 2023-07-19 11:05 次阅读

超级电容器是一种性能介于常规电容器和二次电池之间的新型储能元件,具有功率密度高、免维护、寿命长等优异性能。本文将详细介绍超级电容器的优势以及选购超级电容器时需要考虑的参数和技巧。

超级电容器的选购技巧

1、选购需求

超级电容器的种类的型号有许多,想要选择到合适且好用的产品,我们首先要明确自己的使用需求,由于不同的超级电容器会有各自的特点和优势,所以我们应该根据不同的使用场景和途径来选择适配的超级电容器,只有这样才能更好地发挥它的作用,同时也收获更佳的体验效果。

2、产品功率

超级电容器有不同的功率可供选择,对于功率的选择要根据我们实际使用情况来确定,过大或过小都会不合适,如果大家自己不是很熟悉的话,可以和相关专业人员或者销售厂家咨询,他们都会给出合理的方案和建议。

3、厂家规模

在选择超级电容器的时候也可以看一看厂家的规模,如果有条件也可以到实地进行参观考察。如今市面上的超级电容器厂家越来越多,其中也不乏有部分小作坊缺少正规的营业资格,所以我们尽量选择大厂家会更有保障。

4、售后服务

由于产品的特殊性,超级电容器并非购买完成就万事大吉了,后续的使用和维护同样重要,因此选择超级电容器的时候也要注意厂家提供的售后服务。

5、产品价格

最后,我们也要关注产品价格,都说一分钱一分货,但也并不是越贵越好,我们在选择的时候结合自己的使用需求选择高性价比的产品才更实惠。

选择超级电容器大小要考虑的参数

电压

超级电容器具有一个推荐的工作电压或者最佳工作电压,这个值是根据电容在最高设定温度下最长工作时间来确定的。如果应用电压高于推荐电压,将缩短电容的寿命,如果过压比较长的时间,电容内部的电解液将会分解形成气体,当气体的压力逐渐增强时,电容的安全孔将会破裂或者冲破。短时间的过压对电容而言是可以容忍的。

极性

超级电容器采用对称电极设计,也就说,他们具有类似的结构。当电容首次装配时,每一个电极都可以被当成正极或者负极,一旦电容被第一次100%从满电时,电容就会变成有极性了,每一个超级电容器的外壳上都有一个负极的标志或者标识。虽然它们可以被短路以使电压降低到零伏,但电极依然保留很少一部分的电荷,此时变换极性是不推荐的。电容按照一个方向被充电的时间越长,它们的极性就变得越强,如果一个电容长时间按照一个方向充电后变换极性,那么电容的寿命将会被缩短。

温度

超级电容器的正常操作温度是-40℃~70℃,温度与电压的结合是影响超级电容器寿命的重要因素。通常情况下,超级电容器是温度每升高10℃,电容的寿命就将降低30%~50%,也就说,在可能的情况下,尽可以的降低超级电容器的使用温度,以降低电容的衰减与内阻的升高,如果不可能降低使用温度,那么可以降低电压以抵清高温对电容的负面影响。比如,如果电容的工作电压降低为1.8V,那么电容可以工作于65℃高温下。如果在低于室温的条件下使用超级电容器,那么可以使超级电容工作高于指定的电压,而不会加快超级电容器内部的退化并影响超级电容器的寿命,在低温下提高超级电容的工作电压,可有效地抵消超级电容低温下内阻的升高。在高温情况下,电容内阻会升高,此变化是永久的,不可逆转的(电解液已分解),在低温下,电容内阻的升高是暂时现象,因为低温下,电解液是黏輖性升高,降低了离子的运动速度。

放电

超级电容器放电时,会按照一条斜率曲线放电,当一个应用明确了电容的容量与内阻要求后,最重要的就是需要了解电阻及电容量对放电特性的影响。在脉冲应用中,电阻是最重要的因素,在小电流应用中,容量又是重要的因素。计算公式如下:

V=I(R+t/C)

其中V是起始工作电压与截止工作电压之差,I是放电电流,R是电容是直流内阻,t是放电时间,C是电容容量在脉冲应用中,由于瞬间电流很大,为减少电压跌落,选用低内阻(ESR)的超级电容(R值),在小电流应用中,为降低电压跌落,需要选用大容量的超级电容(C值)。

充电

超级电容器具有多种充电形式,比如恒流、恒功率、恒压等。或者与电源并列,比如电池、燃料电池、DC变换器等。如果一个电容与一个电池并联,那么在电容回路中串联一个电阻将降低电容的充电电流,并提高电池的使用寿命。如果串联了电阻,那么要保证电容的电压输出是直接与负载连接,而没有经过电阻,否则电容是低电阻特性将是无效。很多电池系统不允许瞬间大电流放电,否则会影响到电池的寿命。一只电容最大的推荐充电电流计算公式如下:

I=Vw/5R

其中I是推荐的最大充电电流,Vw是充电电压,R是电容的直流内阻。

电容持续采用大电流或者过压充电。会引起电容发热,过热会导致电容内阻增加、电解液分解产生气体、缩短寿命、漏电流增加或者电容破裂。

自放电与漏电流

自放电与自漏电本质上是一样的,针对超级电容器的结构,相当于在电容内部是正极和负极之间有一条高阻电流通道,这就是意味着在电容充电的时候,同时会有一个额外的附加电流,当在充电是时候,我们可以将此电流当成漏电流;当移去充电电压后,同时电容没有连接负载,这个电流使电容处于放电状态,此时我们将此电流看成自放电电流。

为了可靠地测量漏电流或者放电电流,电容必须被连续充电72小时以上,这同样是由电容的结构决定的。超级电容是模型可以当成几只不同的内阻的超级电容的并联,当充电时,低内阻的超级电容充电速度快,电压很快上升至与充电电压相等,当充电电压移去后,如果高内阻的超级电容还没有被充满,低内阻的超级电容开始向并联的高内阻超级电容放电,这样电容两端的电压下降就会比较快,给人的印象是电容具有比较大的自放电,必须注意的是:当电容容量越大,电容被充满所需的时间就会越长。

电容串联

单体超级电容器的电压一般为2.5V或者2.7V,在许多应用中,需要比较高的电压,这样可以使用串联的方法来提高电容的电压,必须注意,在串联应用中,每一个单体的电容都不能超过其最大的耐压,一旦长期过压,将导致电容电解液分解、气体产生、内阻增加以及电容寿命缩短。

在放电或者充电时,电容容量的差异或者稳定状态下漏电流的差异,都将导致串联电容分压不平衡。在充电时,串联的电容将进行分压,这样高容量的电容将承受更大的电压压力。比如,如果两个1F的电容进行串联,一只是+20%容量偏差,另一只是-20%容量偏差,电容分压如下:

Vcap1=Vsupply×[Ccap1/(Ccap1+Ccap2)]

其中Vcap1是+20%容量偏差的电容如果充电电压是5V

Vcap1=5V×[1.2/(1.2+0.8)]=3V

从上式可以看出,如果需要避免分压大于电容的峰值电压3V,那么电容容量误差必须在同一个趋势范围内,比如同为+20%误差或者同为-20%误差。另外也可以用主动电压平衡电路来弥补电容容量的不匹配造成的电压不平衡。

被动电压平衡

被动电压平衡电路是采用与电容并联的电阻进行分压,这就允许电流从电压比较高的电容向电压比较低的电容流动,通过这种方式进行电压平衡。选择电阻的阻值是非常重要的,通常要使电阻允许的电流大于电容预期的漏电流。需要记住的是,漏电流在温度升高的时候通常会增大。

被动平衡电路只有在不频繁对电容进行充放电的应用中使用,同时能够容忍平衡电阻引起的额外电流,建议选择平衡电阻阻值时,使平衡电阻的电流大于电容漏电流50倍以上,(平衡电阻值为3.3KΩ-22KΩ,取决于电容的最高操作温度),虽然大多数平衡电路都采用比较高的平衡电阻,但当串联的电容非常不匹配时,保护是不够充分的。

主动电压平衡

主动平衡电路强迫串联节点的电压与参考电压相一致,不管电压有多么的不平衡,同时在确保精确的电压平衡时,主动平衡电路在稳定状态下只有非常低的电流,只有当电压超出平衡范围时,才会产生比较大的电流,这些特性使主动平衡电路非常适合于需要频繁充放电的场合。

反极性保护

当串联使用的超级电容器被快速充电时,低容量的电压有可能变成反极性,这是不允许的,同时会降低电容的使用寿命,一个简单的解决办法就是在电容的两端并联一个二极管,正常情况下,它们是反压不导通的。使用一个合适的齐纳稳压二极管替换标准的二极管,能够同时对电容过压进行保护。需要注意,二极管必须能够承受电源的峰值电流。

脉动电流

虽然超级电容器具有比较低的内阻,对相对于电解电容而言,它的内阻还是比较大,当应用于脉动电流场合下,容易引起电容内部发热。从而导致电容内部电解液分解、内阻增加,并引起电容寿命缩短。为了保证电容的使用寿命,在应用于脉动场合时,最好保证电容表面的温度上升不超过5℃。

超级电容器的优势

1、体积小,储电量大,适用范围广。

超级电容设计的非常紧凑,因此通常体积都非常小,一般仅为邮票大小,但小身材有大能量,储电量十分惊人。

2、使用寿命长。

超级电容的放电速度很慢,并且可以反复循环利用多达十万次以上,因此使用寿命极长,当用于一些终端产品中时,超级电容可以为产品的整个生命周期供电。此外,燃料电池或高能量电池如果与超级电容结合,也能提高功率和延长使用寿命。

3、充电速度快。

超级电容器拥有极速充电功能,十分钟左右即可充电至短路容量的90%;。

4、供电效能强。

超级电容器能够在很短的时间内产生大量电能且支持能量循坏,能量高达普通电池的五倍以上。

5、绿色环保。

由于超级电容器生产所需的原材料为天然无污染材料,对自然环境非常友好,因此即使是制作过程中产生的垃圾废物也是安全无害的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电容器
    +关注

    关注

    63

    文章

    5945

    浏览量

    97651
  • 超级电容器
    +关注

    关注

    18

    文章

    392

    浏览量

    28578
  • 储能元件
    +关注

    关注

    0

    文章

    33

    浏览量

    9027
收藏 人收藏

    评论

    相关推荐

    超级电容器的鉴别 方法

    超级电容器的鉴别 如何辨别超级电容器是双电层原理的还是电化学原理的还就是电池。在市场上,超级容器
    发表于 10-13 10:29

    什么是超级电容器超级电容器原理是什么?

    超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子威廉希尔官方网站 领域的科技工作者的一个热门课题。
    发表于 11-17 14:38

    超级电容器的类型

    `超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。 按原理分为双电层型超级电容器和赝电容
    发表于 03-22 16:06

    超级电容器充电

    用5v/500mA电源给超级电容器充电,超级电容器要怎么选择?我在这方面完全小白,之前没接触过超级
    发表于 06-03 14:41

    超级电容器超级”在哪?

    随着市场的需求,“超级电容器”这个名字逐渐走进了大众的视野。不过大部分人对电容器的了解还停留在普通电容器的认知,不清楚什么是超级
    发表于 04-22 09:23

    超级电容器

    采用电化学双电层原理的超级电容器——双电层电容器(Electric Double Layer Capacitor; EDLC),也叫功率电容器(PowerCapacitor),是一种介
    发表于 04-01 08:35

    超级电容器2

    超级电容器的储能原理不同于蓄电池,其充放电过程的容量状态有其自身的特点。超级电容器受充放电电流、温度、充放电循环次数等因素影响,其中充放电流是最主要的影响因素。由于
    发表于 04-01 08:38

    超级电容器原理及优点

    根据电极选择的不同,超级电容器主要有碳基超级电容器、金属氧化物超级
    发表于 04-01 08:40

    超级电容器的原理及应用

    超负荷电路运行的需要,国内开始推广使用超级电容器,这种器件在性能上比传统电容器更加优越。超级电容器实际上属于电化学元件,引起电荷或电能储存流
    发表于 07-21 15:56

    超级电容器的类型

    超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。 按原理分为双电层型超级电容器和赝电容
    发表于 10-30 15:09

    超级电容器超级”在哪?

    随着市场的需求,“超级电容器”这个名字逐渐走进了大众的视野。不过大部分人对电容器的了解还停留在普通电容器的认知,不清楚什么是超级
    发表于 10-30 15:17

    超级电容器简介

    随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。在一些需要高功率、高效率解决方案的设计中,工程师已开始采用
    发表于 04-09 16:27

    超级电容器的原理及应用

    超负荷电路运行的需要,国内开始推广使用超级电容器,这种器件在性能上比传统电容器更加优越。超级电容器实际上属于电化学元件,引起电荷或电能储存流
    发表于 04-29 15:04

    超级电容器

    什么是超级电容器? ◆ 超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrica
    发表于 10-31 13:01 1949次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b>

    超级电容器与传统电容器的区别 影响超级电容器性能的因素

    超级电容器与传统电容器的区别 影响超级电容器性能的因素 在现代电子威廉希尔官方网站 和能量储存领域,超级
    的头像 发表于 02-02 10:28 1522次阅读