0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC MOSFET碳化硅芯片的设计和制造

向欣电子 2023-04-07 11:16 次阅读

来源:碳化硅芯观察

对于碳化硅MOSFET(SiC MOSFET)而言,高质量的衬底可以从外部购买得到,高质量的外延片也可以从外部购买到,可是这只是具备了获得一个碳化硅器件的良好基础,高性能的碳化硅器件对于器件的设计和制造工艺有着极高的要求。这篇文章将为您介绍SiC MOSFET器件设计和制造流程并展示onsemi在这方面的创新威廉希尔官方网站 与成果。

Die Layout


芯片表面一般是如图二所示,由源极焊盘(Source pad),栅极焊盘(Gate Pad)开尔文源极焊盘(Kelvin Source Pad)构成。有一些只有Gate pad,如上图的芯片就没有Kelvin source pad。
01113262-d1fc-11ed-ad0d-dac502259ad0.png

图二.芯片表面

在这里我们仔细观察芯片的周围有一个很窄的环形,它的作用主要是提升芯片的耐压,我们叫耐压环(Edge termination Ring),通常是JTE结构,其实一个芯片主要就是由三部分构成:Terminal Ring,Gate Pad,Kelvin Source Pad和开关单元(Active Cell)。芯片外围一圈是耐压环,Gate pad把栅极信号传递到每一个Cell上面,然后里面是上百万个Active Cell。通常大家关注比较多的是Active Cell,因为芯片的开关和导通性能主要是和Active Cell有比较大的关系。在这里我们把芯片的layout还有各个部分的作用特点总结一下,这样方便大家对芯片有一个更好的认识。

耐压环

(Edge termination Ring)

环绕着芯片的开关单元,目前大多数采用JTE结构;

有效控制漏电流,提高SiC器件的可靠性和稳定性;

减小电场集中效应,提高SiC器件的击穿电压,SiC MOSFET的击穿电压和具体的每一个开关单元有关,同时和耐压环也有很大的关系;

防止离子迁移,JTE威廉希尔官方网站 可以用于抑制移动离子的漂移,从而提高SiC MOSFET的可靠性和稳定性。


其实耐压环的最主要的作用就是提升芯片的耐压,SiC MOSFET的耐压和Active Cell有关系,但是芯片边缘的场强很大,及其容易导致边缘击穿,所以这就是JTE的作用所在。在一些高压的器件中,甚至JTE的面积会大于Active Cell的面积。

栅极焊盘,开尔文源极焊盘

(Gate Pad,Kelvin Source Pad )

栅极pad主要作用就一个,把栅极的信号传输到各个开关单元,同时提一下,安森美的芯片是集成了栅极电阻的,这样在模块封装上可以节省空间和一些成本。

开尔文源极主要是增加了开关速度,减小开关损耗。不过在做并联使用的时候,就需要特别的设计来使用它。

开关单元

(Active Cell)

电流导通和关闭的路径;

所有的单元是并联;

固定的单元特性下,单元的数量决定了整个芯片的导通电阻大小和短路电流能力;

目前主要分为平面和沟槽两种结构。

现在,我们已经对SiC MOSFET的表面layout有了认识,在SiC的芯片里Edge terminal和Active Cell是非常重要的两部分,安森美在JTE的设计上具有丰富的经验,在SiC MOSET上已经从M1发展到了M3,通过几代的威廉希尔官方网站 迭代发展,JTE设计仿真和制造非常的成熟。我们来总结一下JTE的一些特点和一些设计考虑因素。

SiC JTE(结延伸区)是用于改善硅碳化物(SiC)功率器件电压阻断能力的结构。SiC JTE的设计对于实现所需的击穿电压并避免因器件边缘处高电场而导致的过早击穿至关重要。

以下是SiC JTE设计的一些关键考虑因素:

1. JTE区域的宽度和掺杂:JTE区域的宽度和掺杂浓度确定器件边缘处的电场分布。较宽和重掺JTE区域可以减少电场并提高击穿电压。

2. JTE的锥角和深度:JTE的锥角和深度影响电场分布和击穿电压。较小的锥角和较深的JTE可以减少电场并提高击穿电压。

3. 表面钝化:表面钝化层对于减少表面泄漏并提高击穿电压非常重要。需要特别为SiC JTE器件精心设计和优化钝化层。

4. 热设计:SiC JTE器件可以在比其Si对应物更高的温度下工作。但是,高温也可能降低器件性能和可靠性。因此,在SiC JTE设计过程中应考虑热设计,如散热和热应力。

总体而言,SiC JTE设计是一个复杂的过程,涉及各种设计参数之间的权衡。需要进行仔细的优化和仿真,以实现所需的器件性能和可靠性。

Active Cell开关单元 – SiC MOSFET的核心

我们可以把MOSFET(硅和碳化硅)根据它们的栅极结构分成两类:平面结构沟槽结构,它们的示意图如图三所示。如果从结构上来说,硅和碳化硅MOSFET是一样的,但是从制造工艺和设计上来说,由于碳化硅材料和硅材料的特性导致它们要考虑的点大部分都不太一样。比如SiC大量使用了干蚀刻(Dry etch),还有高温离子注入工艺,注入的元素也不一样。

01856efc-d1fc-11ed-ad0d-dac502259ad0.png0192f75c-d1fc-11ed-ad0d-dac502259ad0.png

图三.MOSFET的平面结构与沟槽结构

当前国际上的SiC MOSFET绝大部分都采用了图三A的平面结构,有少部分的厂家采用了图三B的沟槽结构。从发展的角度来看,最终都会衍生到沟槽结构。但是目前的平面结构的潜力还是可以继续深挖的,而沟槽结构也没有表现出它们应当有的水平,在这里我们引入一个统一的尺度来衡量它们的性能 - Rsp(Rdson * area),标识的是单位面积里的导通电阻大小。平面结构的SiC MOSFET具有可靠性高,设计加工简单的优点

安森美用在汽车主驱逆变器里的SiC MOSFET的Rsp 从第一代M1的4.2 mΩ * cm2降低到M2的2.6 mΩ * cm2,目前的最新的M3e常温下的Rsp性能和友商的沟槽结构的SiC MOSFET的水平一致,而高温下的Rsp则低于友商沟槽结构SiC MOSFET的Rsp,达到了行业领先的水平。M3e的cell pitch值和目前的沟槽结构的SiC MOSFET pitch值相当,这表明安森美在平面结构的SiC MOSFET发展优化到了一个相当高的水平。当然一个MOSFET的性能不仅仅看Rsp,还要考虑开关损耗。通过前几代的SiC MOSFET发展,以及根据大量的客户应用反馈,SiC MOSFET器件优化了导通损耗、开通损耗、反向恢复损耗以及短路时间,使得它们在客户的应用中达到最优化的一个效率。

SiC MOSFET的平面结构的Active Cell的设计制造方向主要是减小开关单元间距也就是pitch值,提升开关单元的密度,减小Rdson,提升栅极氧化层的可靠性。

如图三A中的结构为了尽可能的减小导通电阻,需要调整开关单元的间距,pitch值和Wg也就是栅极的宽度有一定的关系,pitch值变小,Wg也相应变小,这个对于栅极的可靠性是有一定好处的,在SiC MOSFET里,栅极氧化层(Gate Oxide)非常的薄,小于100纳米,因此在SiC的生产工艺中使用了干式蚀刻的方法来控制加工的精度。

根据图三A中的导通电阻示意图,我们可以得出Rdson = Rs + Rch + Ra + Rjfet + Rdrif + Rsub, 在这里面Rch和Ra占比最大,超过60%以上,所以它们变成了设计和工艺优化的一个重点方向之一。不过也不是一味的减小开关单元栅极的宽度就可以减小Rsp,栅极的Wg宽度减小到一定范围,反而会导致Rsp变大,在设计的时候需要综合考虑以上的参数相互之间的影响,这样才能获得一个比较理想的优化结果,安森美经过几代的工艺迭代发展,其平面结构的SiC MOSFET上已经在性能,良率、可靠性等方面发展得相对成熟。

在芯片里,每个active cell是并联在一起的,图四是一个芯片的截面图的示意图,在这里采用的是带状结构的布局。从这里大家会对于芯片可以有更形象的了解。

01856efc-d1fc-11ed-ad0d-dac502259ad0.png

01c09cca-d1fc-11ed-ad0d-dac502259ad0.png

图四.芯片的截面图

以下是SiC MOSFET Rdson设计的一些关键考虑因素:

1. 通道宽度和掺杂:SiC MOSFET的通道宽度和掺杂浓度会影响Rdson和电流密度。较宽和重掺的通道可以降低Rdson并提高电流承载能力。

2. 栅极氧化层厚度:栅极氧化层的厚度影响栅极电容,进而影响开关速度和Rdson。较薄的栅极氧化物可以提高开关速度,但也可能增加栅极漏电流,并增加氧化层击穿失效的风险。

3. 栅极设计:栅极设计影响栅极电阻,进而影响开关速度和Rdson。较低的栅极电阻可以提高开关速度,但也可能增加栅极电容。

总体而言,SiC MOSFET Rdson设计是一个复杂的过程,涉及综合考虑各个参数之间的相互影响。需要进行仔细的优化和仿真并且进行试验和测试,以实现所需的器件性能和可靠性。

集成片上栅极电阻

所有针对主驱逆变器开发的SiC MOSFET都集成了栅极的电阻,我们可以从图五看到有无电阻的区别。图五A是不需要栅极电阻(芯片上集成了),图五B是需要额外加一个栅极电阻。

0225c816-d1fc-11ed-ad0d-dac502259ad0.png

图五.有无栅极电阻的区别

集成栅极电阻会给模块设计和制造带来一些好处:

简化了模块绑定线的工艺,降低了失效率。

减少了焊接电阻到DBC的工艺

降低了BOM和制造成本

便于封装的相对小型化设计和制造

SiC MOSFET的设计制造工艺非常复杂,本文对其流程与一些关键考虑因素进行了简要介绍,希望能让大家对SiC MOSFET的设计和制造有一个概念。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    455

    文章

    50721

    浏览量

    423165
  • 碳化硅
    +关注

    关注

    25

    文章

    2748

    浏览量

    49020
收藏 人收藏

    评论

    相关推荐

    为什么碳化硅MOSFET特别需要米勒钳位

    各位小伙伴,不久前我们推送了“SiC科普小课堂”视频课——《什么是米勒钳位?为什么碳化硅MOSFET特别需要米勒钳位?》后反响热烈,很多朋友留言询问课件资料。今天,我们将这期视频的图文讲义奉上,方便大家更详尽地了解在驱动
    的头像 发表于 12-19 11:39 552次阅读
    为什么<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>特别需要米勒钳位

    碳化硅SiC在高温环境下的表现

    碳化硅SiC)在高温环境下的表现非常出色,这得益于其独特的物理和化学性质。以下是对碳化硅在高温环境下表现的分析: 一、高温稳定性 碳化硅具有极高的熔点,其熔点远高于硅等传统半导体材料
    的头像 发表于 11-25 16:37 435次阅读

    碳化硅SiC制造工艺详解 碳化硅SiC与传统半导体对比

    碳化硅SiC制造工艺详解 碳化硅SiC)作为一种高性能的半导体材料,其制造工艺涉及多个复杂步骤
    的头像 发表于 11-25 16:32 1039次阅读

    碳化硅SiC材料应用 碳化硅SiC的优势与性能

    碳化硅SiC材料应用 1. 半导体领域 碳化硅制造高性能半导体器件的理想材料,尤其是在高频、高温、高压和高功率的应用中。SiC基半导体器件
    的头像 发表于 11-25 16:28 488次阅读

    SiC MOSFETSiC SBD的区别

    SiC MOSFET碳化硅金属氧化物半导体场效应晶体管)和SiC SBD(碳化硅肖特基势垒二极管)是两种基于
    的头像 发表于 09-10 15:19 1533次阅读

    第二代SiC碳化硅MOSFET关断损耗Eoff

    第二代SiC碳化硅MOSFET关断损耗Eoff
    的头像 发表于 06-20 09:53 488次阅读
    第二代<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>关断损耗Eoff

    碳化硅(SiC)功率器件的开关性能比较

    过去十年,碳化硅(SiC)功率器件因其在功率转换器中的高功率密度和高效率而备受关注。制造商们已经开始采用碳化硅威廉希尔官方网站 来开发基于各种半导体器件的功率模块,如双极结晶体管(BJT)、结型场效
    的头像 发表于 05-30 11:23 721次阅读
    <b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)功率器件的开关性能比较

    Nexperia发布新款1200V碳化硅MOSFET

    Nexperia(安世半导体)近日宣布,公司推出了业界领先的1200V碳化硅SiCMOSFET,标志着其在高功率半导体领域的又一重要突破。
    的头像 发表于 05-23 11:34 924次阅读

    碳化硅模块(SiC模块/MODULE)大电流下的驱动器研究

    由于碳化硅SiCMOSFET具有高频、低损耗、高耐温特性,在提升新能源汽车逆变器效率和功率密度方面具有巨大优势。对于SiC MOSFET
    发表于 05-14 09:57

    SIC 碳化硅认识

    1:什么是碳化硅 碳化硅SiC)又叫金刚砂,它是用石英砂、石油焦、木屑、食盐等原料通过电阻炉高温冶炼而成,其实碳化硅很久以前就被发现了,它的特点是:化学性能稳定、导热系数高、热膨胀系
    的头像 发表于 04-01 10:09 1013次阅读
    <b class='flag-5'>SIC</b> <b class='flag-5'>碳化硅</b>认识

    碳化硅芯片设计:创新引领电子威廉希尔官方网站 的未来

    随着现代电子威廉希尔官方网站 的飞速发展,碳化硅SiC)作为一种新型的半导体材料,以其优异的物理和化学性能,在功率电子器件领域展现出巨大的应用潜力。碳化硅芯片的设计和
    的头像 发表于 03-27 09:23 1152次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>芯片</b>设计:创新引领电子威廉希尔官方网站
的未来

    碳化硅压敏电阻 - 氧化锌 MOV

    和发电机绕组以及磁线圈中的高关断电压。 棒材和管材EAK碳化硅压敏电阻 这些EAK非线性电阻压敏电阻由碳化硅制成,具有高功率耗散和高能量吸收。该系列采用棒材和管材制造,外径范围为 6 至 30
    发表于 03-08 08:37

    一文了解SiC碳化硅MOSFET的应用及性能优势

    共读好书 碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。 碳化硅MOSFET
    的头像 发表于 02-21 18:24 1390次阅读
    一文了解<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的应用及性能优势

    SiC碳化硅MOSFET的应用及性能优势

    碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。
    的头像 发表于 01-20 17:18 1073次阅读
    <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>的应用及性能优势