0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

芯片小课堂 | 失效模式与FMEDA

矽力杰半导体 2023-03-06 10:36 次阅读

失效模式与FMEDA

- 第88期 -

PART 01

首先,何谓失效?

ISO 26262中对“故障”、“错误”、“失效”的定义如下:

故障(Fault): 可引起要素或相关项失效的异常情况。

错误(Error): 计算的、观测的、测量的值或条件与真实的、规定的、理论上正确的值或条件之间的差异。

失效(Failure):要素按要求执行功能的能力的终止。

同一个层级中,故障是失效的原因,失效是故障的结果;错误是故障的表现形式。

不同层级间,组件层级的失效最终会引发系统层级的故障。

d1148a16-b921-11ed-ad0d-dac502259ad0.png

如上图故障分为三类:

系统性软件故障

系统性硬件故障

随机硬件故障

这里我们重点讨论随机硬件故障。一块ECU由数以万计的元器件组成,每个元器件都有发生随机失效的可能,但并不是所有元器件的失效都会导致违背安全目标;有些元器件的失效会直接导致违背安全目标;而有些元器件需要与另一个元器件同时发生失效才会违背安全目标。因此,我们将随机硬件故障类型进行进一步的细分为:单点故障、 残余故障、 可探测的双点故障、可感知的双点故障、 潜伏的双点故障和安全故障等。

d1497faa-b921-11ed-ad0d-dac502259ad0.png

1.单点故障

直接导致违背安全目标;

硬件要素故障,对于该硬件要素,没有任何安全机制预防其某些故障违背安全目标。

2.残余故障

可直接导致违背安全目标

硬件要素的故障,对于该硬件要素,有至少一个安全机制预防其某些违背安全目标的故障。

3.可探测的双点故障

仅与另一个(双点故障有关的)独立硬件故障联合才能导致安全目标的违背。

被防止其潜伏的安全机制所探测

4.可感知的双点故障

仅与另一个(双点故障有关的)独立硬件故障联合才能导致安全目标的违背

在规定的时间内被驾驶员所感知(有或无安全机制探测)。

5.潜伏的双点故障

仅与另一个(双点故障有关的)独立硬件故障联合才能导致安全目标的违背。

不被安全机制所探测也不被驾驶员感知。直到第二个独立故障发生前,系统始终可以运行且驾驶员也不知道发生了故障。

6.安全故障

指某个故障,它不会显著地增加违反安全目标的概率。

d17ae842-b921-11ed-ad0d-dac502259ad0.png

PART 02

FMEDA

d1a52634-b921-11ed-ad0d-dac502259ad0.png

什么是FMEDA?

FMEDA-失效模式影响与诊断分析(Failure Mode Effect and Diagnostic Analysis)是产品设计定量分析的基础,可以用来分析整个系统也可以用来分析系统的某个模块单元。

系统失效的过程往往是从单元(器件)的异常情况(故障)开始导致测量值与规定值不符(误差),最终使系统或单元失去执行某项功能的能力(失效)。失效率指系统或零件在单位时间内失效的概率,其单位通常用FIT表示,1FIT=10-9 /h。

d1ca5bac-b921-11ed-ad0d-dac502259ad0.png

产品设计过程中, FMEDA可以同时分析以上三个指标,度量产品的硬件设计是否符合相应的安全要求。产品设计的过程中SPFM 和LFM 可以用来验证硬件构架设计应对随机失效的鲁棒性,PMHF用来评估随机硬件失效率导致违反安全目标的风险已经足够小。

FMEDA计算公式:

1.单点故障度量指标SPFM:

d1eba532-b921-11ed-ad0d-dac502259ad0.png

2.潜在故障度量指标LFM

d20d7324-b921-11ed-ad0d-dac502259ad0.png

3.随机硬件失效率PMHF:

d22a7f78-b921-11ed-ad0d-dac502259ad0.png

上式中各个符号的含义如下:

d2484648-b921-11ed-ad0d-dac502259ad0.png

下面的公式为IEC TR 62380中关于半导体的可靠性数学预测模型:

d272cef4-b921-11ed-ad0d-dac502259ad0.png

其中各个参数含义如下:

d296796c-b921-11ed-ad0d-dac502259ad0.png

裸片失效率λdie

对于某一种器件工艺类型,λ1和λ2均可以通过查表法获得,N可以通过芯片设计EDA工具统计得到,器件工艺类型的温度系数:

d2c2e5ec-b921-11ed-ad0d-dac502259ad0.png

参数πt是器件工艺类型在对应的芯片结温tj下获得的,芯片的结温tj可以通过以下公式计算得到:

d2dc930c-b921-11ed-ad0d-dac502259ad0.png

其中,tac即为工作剖面中的参数,Rja为封装的热阻,P为芯片的功耗。

d2f0dda8-b921-11ed-ad0d-dac502259ad0.png

其中各项参数都和工作剖面有关,即产品在完成规定任务这段时间内所经历的时间和环境的时序描述。芯片在工作时环境温度是在不停变化的,同时也存在运行状态和非运行状态。

IEC TR 62380中列举了如下表的2种典型的工作剖面,带入工作剖面前半部分的各项参数,即可获得对应的温度系数。

d3083c5a-b921-11ed-ad0d-dac502259ad0.png

裸片中往往混合着多种工艺类型的器件,可以通过叠加求和的方式得到整个裸片的失效率。其中由于λ2是有关集成电路工艺威廉希尔官方网站 的失效率,和晶体管数量无关,因此λ2推荐在叠加求和的时候要根据各个工艺器件的晶体管数N进行加权平均得到。因此对于混合工艺的裸片的失效率计算公式如下:

d335ddc2-b921-11ed-ad0d-dac502259ad0.png

封装失效率λpackage:

对于某一特定封装,πα和λ3均可以通过查表法简单计算获得,而温度循环系数:

d357bc9e-b921-11ed-ad0d-dac502259ad0.png

其中的各项参数也都和工作剖面后半部分的参数有关,根据IEC TR 62380:

ni表示的为1年内的循环次数,每年不使用车辆的天数为30天,则使用的天数为335天,进而夜晚启动的次数为每年670次,相应的白天启动的次数为每年1340次,则:

d37281be-b921-11ed-ad0d-dac502259ad0.pngd38ff3c0-b921-11ed-ad0d-dac502259ad0.png

其中,(tac)i取工作剖面中的加权平均值计算得到(tac)i=60℃,(tae)i则根据下表给出:

d39e3822-b921-11ed-ad0d-dac502259ad0.png

可见,通过“世界范围”方式计算出的结果和在工作剖面中直接给出的公式是一致的。

另外,λpackage是包括了封装内部的失效率(框架连接和焊盘)和封装外部与PCB的焊点失效率,作为芯片开发者,FMEDA只要在计算的时候考虑其中占比80%的封装内部的失效率即可。

电过应力失效率λoverstress

由于λEOS电子过应力属于系统性失效,因此在FMEDA时,这部分不应该被计算在内。

由于不同的产品应用导致的危害不同,ISO26262引入了安全等级和量化指标。FMEDA作为定量分析的核心威廉希尔官方网站 得到从业者越来越多的关注。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    455

    文章

    50731

    浏览量

    423195
  • 失效
    +关注

    关注

    0

    文章

    32

    浏览量

    10555
收藏 人收藏

    评论

    相关推荐

    芯片失效性分析与应对方法

    在汽车、数据中心和人工智能等关键领域,半导体芯片的可靠性成为系统稳定运行的核心要素。随着威廉希尔官方网站 发展,芯片面临着更为复杂的使用环境与性能需求,其失效问题愈发凸显。本文将深入探讨芯片
    的头像 发表于 12-20 10:02 665次阅读
    <b class='flag-5'>芯片</b>的<b class='flag-5'>失效</b>性分析与应对方法

    FIB威廉希尔官方网站 :芯片失效分析的关键工具

    芯片失效分析的关键工具在半导体行业迅速发展的今天,芯片的可靠性成为了衡量其性能的关键因素。聚焦离子束(FIB)威廉希尔官方网站 ,作为一种先进的微纳加工威廉希尔官方网站 ,对于芯片
    的头像 发表于 11-28 17:11 283次阅读
    FIB威廉希尔官方网站
:<b class='flag-5'>芯片</b><b class='flag-5'>失效</b>分析的关键工具

    IV测试助力解芯片失效原因

    芯片这个微观而又复杂的世界里,失效分析如同一场解谜之旅,旨在揭开芯片出现故障的神秘面纱。而 IV(电流-电压)测试作为一种重要的分析手段,在芯片
    的头像 发表于 11-21 17:13 265次阅读
    IV测试助力解<b class='flag-5'>芯片</b><b class='flag-5'>失效</b>原因

    连接器的失效模式和改善对策

    重要因素。线束插接件的常见失效模式有插接件端子退针、歪针、扩孔,插接件虚接等多种模式,插接件以上失效模式也不能完全被EOL 设备或功能检查所
    的头像 发表于 10-30 15:44 389次阅读

    电阻失效模式总结

    电阻器是电子电路中不可或缺的元件,它通过限制电流流动来维持电路的稳定。然而,电阻器也可能因为各种原因而失效,影响电路的正常工作。本文将对电阻器的失效模式进行总结,以帮助工程师和威廉希尔官方网站 人员更好地理解和预防这些
    的头像 发表于 10-27 10:18 186次阅读
    电阻<b class='flag-5'>失效</b><b class='flag-5'>模式</b>总结

    瓷介电容器失效模式分析方法

    瓷介电容器作为电子元件中的重要组成部分,其失效模式分析对于保障电子设备的可靠性和稳定性具有重要意义。 一、引言 瓷介电容器,即陶瓷介质电容器,因其高频特性好、温度系数小、耐高压等优点,在电子电路中
    的头像 发表于 09-20 15:35 507次阅读

    广电计量|功率场效应管过压失效机理及典型特征分析

    失效分析最常观察到的现象是EOS过电失效,分为过压失效及过流失效的两种失效模式。对于以功率器件为
    的头像 发表于 09-18 10:55 909次阅读
    广电计量|功率场效应管过压<b class='flag-5'>失效</b>机理及典型特征分析

    简述继电器触点失效

    继电器触点失效是电子设备中常见的问题之一,其失效模式多种多样,涉及物理、化学和电气等多个方面。以下是对继电器触点失效模式的详细分析,包括常见
    的头像 发表于 09-10 10:47 975次阅读

    请问ISO124的失效模式是什么?

    请问ISO124的失效模式是什么?器件故障后隔离电容是断路还是断路?会不会造成被隔离信号的幅值或者频率的变化?
    发表于 08-16 10:46

    LM2902B的失效模式有哪些?

    我在做电路设计的DFMEA。其中用到LM2902B。请问它的失效模式有哪些?发生的概率是多少?
    发表于 07-31 07:22

    MOS管的几种失效模式

    和工作环境的变化,MOS管也可能会出现各种失效模式。本文将详细介绍MOS管的几种主要失效模式,并通过参考数据和信息,进行详细的解释和归纳。
    的头像 发表于 05-30 16:33 2805次阅读

    晶闸管的失效模式与机理

    电路性能下降甚至系统瘫痪。因此,深入了解晶闸管的失效模式与机理,对于提高电路设计的可靠性具有重要意义。本文将从晶闸管的基本原理出发,详细探讨其失效模式与机理,并结合相关数字和信息进行说
    的头像 发表于 05-27 15:00 1223次阅读

    连接器的三类失效模式

    连接器作为重要的电子元器件,担负着系统内部以及系统之间信号连接和电能传输的重任,因此在长期使用的过程中不免会存在不同程度失效的情况。其失效模式大致可分为接触失效、绝缘
    的头像 发表于 04-23 16:18 696次阅读

    IGBT器件失效模式的影响分析

    功率循环加速老化试验中,IGBT 器件失效模式 主要为键合线失效或焊料老化,失效模式可能存在 多个影响因素,如封装材料、器件结构以及试验条
    发表于 04-18 11:21 973次阅读
    IGBT器件<b class='flag-5'>失效</b><b class='flag-5'>模式</b>的影响分析

    电阻器的失效模式有哪些

    电阻器是一种常见的电子元件,用于限制电流的流动。在电路中,电阻器起着重要的作用,但在使用过程中可能会出现失效的情况。本文将介绍电阻器的失效模式和机理。 一、失效
    的头像 发表于 01-18 17:08 2992次阅读
    电阻器的<b class='flag-5'>失效</b><b class='flag-5'>模式</b>有哪些