0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

下一代隔离式Σ-Δ调制器如何改进系统级电流测量

星星科技指导员 来源:ADI 作者:Nandin Xu 2023-06-15 14:18 次阅读

本文首先介绍共模瞬变抗扰度(CMTI)详细概念及其在系统中的重要性。我们将讨论一个新的隔离式Σ-Δ调制器系列及其性能,以及它如何提高和增强系统电流测量精度,尤其是针对失调误差和失调误差漂移。最后介绍推荐的电路解决方案。

隔离调制器广泛用于需要高精度电流测量和电流隔离的电机/逆变器。随着电机/逆变器系统向高集成度和高效率转变,SiC和GaN FET由于具有更小尺寸、更高开关频率和更低发热量的优势,而开始取代MOSFETIGBT。然而,隔离器件需要具有高CMTI能力,另外还需要更高精度的电流测量。下一代隔离调制器大大提高了CMTI能力,并改善了其本身的精度。

什么是共模瞬变抗扰度?

共模瞬变抗扰度规定了应用在绝缘临界状态下的瞬变脉冲上升和下降的速率。如果超过该速率,可能导致对数据或时钟的损坏。脉冲的变化率和绝对共模电压都会记录。

新的隔离调制器在静态和动态CMTI条件下进行了测试。静态测试检测来自器件的单个位错误。动态测试监测滤波后的数据输出,以观察在CMTI脉冲随机应用中的噪声性能变化。详细测试框图如图1所示。

wKgZomSKsZKAUKcZAAD3yc2UVmc012.png

图1. 简化的CMTI测试框图

CMTI之所以重要,是因为高压摆率(高频)瞬变可能会破坏跨越隔离栅的数据传输。了解并测量这些瞬变对器件的影响至关重要。ADI的测试方法基于IEC 60747-17标准,其中涉及磁耦合器的共模瞬变抗扰度(CMTI)测量方法。

如何在平台上测试隔离调制器的CMTI特性

简化的CMTI测试平台包括如下项目,如图1所示:

VDD1/VDD2的电池电源。

高共电压脉冲发生器。

用于监视数据的示波器

用于分析数据的数据采集平台和用于隔离调制器的256倍抽取sinc3滤波器

隔离模块(通常使用光隔离)。

隔离调制器。

静态和动态CMTI测试使用相同的平台,只是输入信号不同。该平台还可用于测试其他隔离产品的CMTI性能。对于隔离调制器,将一位流数据抽取和滤波后传输到电机控制系统中的控制环路中,从而使得动态CMTI测试性能更加全面和有用。图2和图3显示了不同CMTI水平下的时域和频域CMTI动态测试性能。从图2中可以看出,对于同一隔离调制器,当施加更高VCM瞬变信号时,杂散会变得更大。当VCM瞬变信号超过隔离调制器规格时,时域中会出现非常大的杂散(如图2c所示)。这在电机控制系统中会带来严重后果,导致很大的扭矩纹波。

wKgZomSKrT6AbMTkAABio9B65DM778.jpg

图2. 时域动态CMTI性能

wKgaomSKrT-AQaZsAACSxfgFNnQ384.jpg

图3. 频域动态CMTI性能

图3显示了不同频率瞬变下的FFT域性能(即通过改变瞬变周期来保持VCM瞬变水平)。图3中的结果表明,谐波与瞬变频率高度相关。因此,隔离调制器的CMTI能力越高,FFT分析中的噪声水平就越低。与上一代隔离调制器相比,下一代 ADuM770x器件 将CMTI能力从25 kV/μs提高到150 kV/μs,极大地改善了系统瞬态抗扰度,详见表1中的比较数据。

主要规格 ADuM7701/ ADuM7703 ADuM7702/ ADuM7704 AD7403 AD7401
隔离
工作电压
(VPK)
1270 1270 1250 891
CMTI
(kV/μs,最小值)
150 150 25 25
性能
失调误差
(mV,最大值)
±0.18 ±0.18 ±0.75 ±0.6
50 mV时的失调漂移
(μV/°C,最大值)
±0.25(16引脚)
±0.6(8引脚)
250 mV时的失调漂移
(μV/°C,最大值)
±0.6 3.8 3.5
增益误差
(%FSR,最大值)
±0.2 ±0.2 ±1.2 ±0.3
增益漂移
(ppm/°C)50 mV时
±15.6(典型值)
±31.3(最大值)
增益漂移
(ppm/°C)250 mV时
±12.5(典型值)
±28(最大值)
65(典型值)
95(最大值)
36(典型值)
50 mV时的 ENOB(位) 14.2(典型值)
13.1(最小值)
250 mV时的 ENOB(位) 14(典型值)
13.3(最小值)
14.2(典型值)
13.1(最小值)
11.5典型值
集成度
LDO

封装 8引脚和16引脚 8引脚和16引脚 8引脚和16引脚 16引脚

系统级补偿和校准威廉希尔官方网站

在电机控制或逆变器系统中,电流数据的精度越高,系统就越稳定和高效。失调和增益误差是ADC中直流误差的常见来源。图4显示了失调和增益误差如何影响ADC转换函数。这些误差会以扭矩纹波或速度纹波的形式影响系统。对于大多数系统,为了限制误差影响,可以在环境温度下校准消除这些误差。

wKgZomSKrUGAI-RHAACa3bQC_SY659.jpg

图4. ADC转换函数的失调和增益误差

否则,整个温度范围内的失调漂移和增益误差会成为问题,因为它们更难以补偿。在已知系统温度的情况下,对于具有线性和可预测漂移曲线的转换器,通过向曲线添加补偿因子以使失调漂移曲线尽可能平坦,可以实现对失调和增益误差漂移的补偿(尽管成本高且耗时)。这种补偿方法的详情参见应用笔记 AN-1377。这种方法可以降低 AD7403/AD7405 数据手册中规定的漂移值,失调漂移降低多达30%,增益误差漂移降低多达90%。当希望改善系统级的失调和增益误差漂移时,可以将该方法应用于任何其他转换器件。

如何使用斩波威廉希尔官方网站

另外还有一种称为斩波威廉希尔官方网站 的设计,它对系统设计人员来说更高效、更方便,而且斩波功能也可以与硅片本身很好地集成,以最大限度地减少失调和增益误差漂移。斩波方案如图5所示,在ADC上实施的解决方案是对整个interwetten与威廉的赔率体系 信号链进行斩波,以消除所有失调和低频误差。

wKgaomSKrUKAInMMAACKnfteqB0280.jpg

图5. 斩波

调制器的差分输入在输入多路复用器上交替反相(或斩波),针对斩波的每个相位执行一次ADC转换(多路复用器切换到0或1状态)。调制器斩波在输出多路复用器中反转,然后将输出信号送入数字滤波器。

如果Σ-Δ调制器中的失调表示为VOS,则当斩波为0时,输出为(AIN(+) − AIN(−)) + VOS;当斩波为1时,输出为−[(AIN(−) − AIN(+)) + VOS]。误差电压VOS通过在数字滤波器中对这两个结果求平均来消除,得出(AIN (+) − AIN (−)),它等于没有任何失调项的差分输入电压。

最新的隔离式调制器通过优化内部模拟设计和使用最新斩波威廉希尔官方网站 来改善失调和增益误差相关的性能,这极大地简化了系统设计并减少了校准时间。最新ADuM770x器件具有非常高的隔离度和出色的ADC性能。另外还提供LDO版本,它可简化系统的电源设计。

推荐电路和布局设计

电机系统的典型电流测量电路如图6所示。虽然系统中需要三个相电流测量电路,但框图中只显示了一个。其他两个相电流测量电路类似,用蓝色虚线表示。从相电流测量电路可以看出,RSHUNT电阻的一侧连接到ADuM770x-8的输入。另一侧连接到高压FET(可以是IGBT或MOSFET)和电机。当高压FET改变状态时,总是会出现过压、欠压或其他电压不稳定情况。相应地,RSHUNT电阻的电压波动会传递到ADuM770x-8,相关数据将在DATA引脚上接收。布局和系统隔离设计可以改善或恶化电压不稳定情况,从而影响相电流测量精度。

wKgZomSKsaKAVpSJAAGnUo4DGy8247.png

图6. 电机系统中的典型电流测量电路

推荐的电路设置如图6所示:

VDD1/VDD2解耦需要10 μF/100 nF电容,这些电容应放置在尽可能靠近相应引脚的地方。

需要一个10 Ω/220 pF RC滤波器。

建议使用可选的差分电容来降低分流器的噪声影响。将该电容放置在靠近IN+/IN–引脚的位置(推荐使用0603封装)。

当数字输出线路较长时,建议使用82 Ω/33 pF RC滤波器。为了获得良好的性能,应考虑使用屏蔽双绞线电缆。

如有更高的性能要求,请考虑使用4引脚分流电阻。

为了达到最佳性能,良好的布局也必不可少。推荐的布局如图7所示。建议在分流电阻和IN+/IN–输入引脚之间使用差分对布线,以增强共模抑制能力。10 Ω/220 pF滤波器应尽可能靠近IN+/IN–输入引脚放置。10 μF/100 nF解耦电容应靠近VDD1/VDD2电源引脚放置。建议将部分地层GND1置于输入相关电路下方,以提高信号稳定性。对于独立的GND1线路(显示为紫色并与差分对走线平行),从分流电阻到ADuM770x-8 GND引脚需要采用星形连接,以降低电源电流波动的影响。

wKgZomSKrUWAdztFAADgQEC0qig760.jpg

图7. ADuM770x-8电路的推荐PCB布局

结论

最新的ADuM770x隔离式Σ-Δ调制器将CMTI提高到150 kV/μs水平,并改善了温度漂移性能,这对电流测量应用非常有利。在设计阶段使用推荐的电路和布局将很有帮助。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    147

    文章

    7160

    浏览量

    213189
  • 逆变器
    +关注

    关注

    283

    文章

    4716

    浏览量

    206727
  • 调制器
    +关注

    关注

    3

    文章

    841

    浏览量

    45146
收藏 人收藏

    评论

    相关推荐

    新型隔离Σ-Δ调制器如何提高和增强系统电流测量精度

    最新的隔离调制器通过优化内部模拟设计和使用最新斩波威廉希尔官方网站 来改善失调和增益误差相关的性能,这极大地简化了系统设计并减少了校准时间。最新ADuM770x器件具有非常高的
    发表于 03-07 10:28 671次阅读
    新型<b class='flag-5'>隔离</b><b class='flag-5'>式</b>Σ-Δ<b class='flag-5'>调制器</b>如何提高和增强<b class='flag-5'>系统</b><b class='flag-5'>电流</b><b class='flag-5'>测量</b>精度

    采用ADC和隔离Δ-Σ调制器的数据采集系统

    如下的问题:为什么要用隔离型 Δ-Σ 调制器来取代全 ADC 与数字隔离器的组合呢?为什么要选择个如图 2 中所示的
    发表于 09-12 14:31

    Σ-Δ调制器提高运动控制效率

    因素,例如成本、功耗以及性能水平,但对大多数系统设计人员而言,个重要目标是在成本控制范围内提高效率。F从霍尔效应传感到分流电阻与隔离Σ
    发表于 10-10 18:14

    Σ-Δ调制器提高运动控制效率

    成本、功耗以及性能水平,但对大多数系统设计人员而言,个重要目标是在成本控制范围内提高效率。F从霍尔效应传感到分流电阻与隔离Σ-Δ
    发表于 10-18 11:27

    Σ-Δ调制器提高运动控制效率

    额定电流的峰值电流,并 需要可靠捕获两者的值,则保持动态范围也是个难题。 面对这些难题,系统设计人员非常需要具有更宽动态范围或 更高信噪比和信纳比(SINAD)的优异Σ-Δ
    发表于 10-18 10:49

    Silicon Labs下一代交流电流传感器系列

      高性能模拟与混合信号IC领导厂商Silicon Laboratories (芯科实验室有限公司, Nasdaq: SLAB)今日推出下一代交流电流传感器系列,可取代传统的电流变压器
    发表于 11-01 17:24

    隔离型Σ-Δ调制器的简化框图

    、对输出数据信号完整性和时钟信号电磁干扰(EMI)的比较隔离的Σ-Δ调制器长期以来被证明可以在嘈杂的工业电机应用环境中提供非常高的精度和强劲的电流和电压感测能力。有两类
    发表于 10-21 16:12

    AD7400: 隔离Σ-Δ调制器

    AD7400:  隔离Σ-Δ调制器 AD7400*是款二阶Σ-Δ调制器,采用ADI公司iCoupler®威廉希尔官方网站 的片内数
    发表于 09-25 08:48 2194次阅读

    德州仪器推出AMC1200隔离放大器与AMC1204调制器

    德州仪器(TI)宣布推出隔离放大器及款△∑型调制器,可为电机控制与绿色能源应用实现业界最佳的分流
    发表于 07-19 09:07 3229次阅读

    ADUM7701:16位隔离∑-∆调制器

    ADUM7701:16位隔离∑-∆调制器
    发表于 03-19 12:40 0次下载
    ADUM7701:16位<b class='flag-5'>隔离</b><b class='flag-5'>式</b>∑-∆<b class='flag-5'>调制器</b>

    种提高隔离Δ-Σ 调制器电流采样短路保护性能的方法

    种提高隔离Δ-Σ 调制器电流采样短路保护性能的方法
    发表于 11-01 08:26 3次下载
    <b class='flag-5'>一</b>种提高<b class='flag-5'>隔离</b>Δ-Σ <b class='flag-5'>调制器</b><b class='flag-5'>电流</b>采样短路保护性能的方法

    使用光隔离调制器在电机控制中进行安全、准确的隔离电流传感

    本文介绍了使用光隔离调制器在电机控制中进行安全、准确的隔离电流传感
    的头像 发表于 12-13 10:30 1771次阅读
    使用光<b class='flag-5'>隔离</b>的<b class='flag-5'>调制器</b>在电机控制中进行安全、准确的<b class='flag-5'>隔离</b><b class='flag-5'>电流</b>传感

    下一代隔离Σ-Δ调制器如何改善系统电流测量

    共模瞬态抗扰度指定跨隔离边界施加的瞬态脉冲的上升和下降速率,超过该速率,时钟或数据将损坏。记录脉冲的变化率和绝对共模电压(VCM)。
    的头像 发表于 12-14 15:27 1050次阅读
    <b class='flag-5'>下一代</b><b class='flag-5'>隔离</b><b class='flag-5'>式</b>Σ-Δ<b class='flag-5'>调制器</b>如何改善<b class='flag-5'>系统</b><b class='flag-5'>级</b><b class='flag-5'>电流</b><b class='flag-5'>测量</b>

    隔离Σ-Δ调制器AD7401A应用笔记

    电子发烧友网站提供《隔离Σ-Δ调制器AD7401A应用笔记.pdf》资料免费下载
    发表于 11-29 11:45 0次下载
    <b class='flag-5'>隔离</b><b class='flag-5'>式</b>Σ-Δ<b class='flag-5'>调制器</b>AD7401A应用笔记

    下一代隔离Σ-Δ调制器如何改进系统电流测量

    本文首先介绍共模瞬变抗扰度(CMTI)详细概念及其在系统中的重要性。我们将讨论个新的隔离Σ-Δ调制器系列及其性能,以及它如何提高和增强
    的头像 发表于 03-15 08:22 514次阅读
    <b class='flag-5'>下一代</b><b class='flag-5'>隔离</b><b class='flag-5'>式</b>Σ-Δ<b class='flag-5'>调制器</b>如何<b class='flag-5'>改进</b><b class='flag-5'>系统</b><b class='flag-5'>级</b><b class='flag-5'>电流</b><b class='flag-5'>测量</b>