FAL组件
什么是FAL?
FAL (Flash Abstraction Layer)Flash 抽象层,是对 Flash 及基于 Flash 的分区进行管理、操作的抽象层,对上层统一了 Flash 及 分区操作的 API (框架图如下所示),并具有以下特性:
支持静态可配置的分区表,并可关联多个 Flash 设备;
分区表支持自动装载。避免在多固件项目,分区表被多次定义的问题;
代码精简,对操作系统无依赖,可运行于裸机平台,比如对资源有一定要求的 Bootloader;
统一的操作接口。保证了文件系统、OTA、NVM(例如:EasyFlash) 等对 Flash 有一定依赖的组件,底层 Flash 驱动的可重用性;
自带基于 Finsh/MSH 的测试命令,可以通过 Shell 按字节寻址的方式操作(读写擦) Flash 或分区,方便开发者进行调试、测试;
通过上图可以清晰明了看到,FAL抽象层向下可以通过Flash硬件进行统一管理,当然也可以使用SFUD框架(串行Flash通用驱动库,这部分RT-Thread官方已完成框架的移植同时提供多个应用历程),而对上也可以使用如DFS、NVM提供的Flash硬件统一访问接口,方便用户更加直接方便对底层flash硬件的访问操作。 注:非易失性存储器 (NVM):在芯片电源关闭期间保存存储在其中的数据。因此,它被用于没有磁盘的便携式设备中的内存,以及用于可移动存储卡等用途。主要类型有:非易失性半导体存储器 (Non-volatile semiconductor memory, NVSM) 将数据存储在浮栅存储单元中,每个单元都由一个浮栅(floating-gate) MOSFET 组成。
关于存储,可以用一张图来解释:
FAL组件使用ENV配置FAL
在RT-Thread v4.1.0之前,FAL是作为软件包形式对用户开放使用的,而v4.1.0之后,FAL被RT-Thread官方重新定义为RTT组件的一部分,这样也能更加方便用户的开发。
下面正式讲解FAL组件的使用:
首先打开ENV工具,根据以下路径打开FAL使能RT-Thread Components->FAL: flash abstraction layer,由于后面会用到SFUD,所以这里把FAL uses SFUD drivers一并使能,并修改FAL设备名称为W25Q128.
完成上述操作后保存退出,并使用scons --target=mdk5重新生成MDK5文件并打开。
FAL组件FAL SFUD移植
示例选用W25Q128 spi flash作为测试模块,并且使用SFUD框架对spi flash设备进行管理和驱动。 由于目前RT-Thread的SFUD已经对W25Q128完成支持,根据官方的使用手册,仅需编写fal_cfg.h文件完成对FAL_FLASH_DEV_TABLE及FAL_PART_TABLE的定义即可。文件存放路径:. t-threadsplpc55sxxlpc55s69_nxp_evkoardportsfal_cfg.h
// fal.cfg.h /* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */ #ifndef _FAL_CFG_H_ #define _FAL_CFG_H_ #include #include #ifndef FAL_USING_NOR_FLASH_DEV_NAME #define NOR_FLASH_DEV_NAME "norflash0" #else #define NOR_FLASH_DEV_NAME FAL_USING_NOR_FLASH_DEV_NAME #endif /* Flash device Configuration */ extern struct fal_flash_dev nor_flash0; /* flash device table */ #define FAL_FLASH_DEV_TABLE { &nor_flash0, } /* Partition Configuration */ #ifdef FAL_PART_HAS_TABLE_CFG /* partition table */ #define FAL_PART_TABLE { {FAL_PART_MAGIC_WROD, "easyflash", NOR_FLASH_DEV_NAME, 0, 512 * 1024, 0}, {FAL_PART_MAGIC_WROD, "download", NOR_FLASH_DEV_NAME, 512 * 1024, 1024 * 1024, 0}, {FAL_PART_MAGIC_WROD, "wifi_image", NOR_FLASH_DEV_NAME, (512 + 1024) * 1024, 512 * 1024, 0}, {FAL_PART_MAGIC_WROD, "font", NOR_FLASH_DEV_NAME, (512 + 1024 + 512) * 1024, 7 * 1024 * 1024, 0}, {FAL_PART_MAGIC_WROD, "filesystem", NOR_FLASH_DEV_NAME, (512 + 1024 + 512 + 7 * 1024) * 1024, 7 * 1024 * 1024, 0}, } #endif /* FAL_PART_HAS_TABLE_CFG */ #endif /* _FAL_CFG_H_ */
此时编译的话是找不到该头文件的,需要在Keil中设置:
在RTT FAL组件中的SFUD提供的fal_flash_dev对象默认的nor_flash0参数中,flash大小默认为8M,而W25Q128最大最16M,可以选择在. t-threadcomponentsfalsamplesportingfal_flash_sfud_port.c文件中对struct fal_flash_dev nor_flash0进行修改:
struct fal_flash_dev nor_flash0 = { .name = FAL_USING_NOR_FLASH_DEV_NAME, .addr = 0, .len = 16 * 1024 * 1024, .blk_size = 4096, .ops = {init, read, write, erase}, .write_gran = 1 };
当然也可以选择不进行修改,专家的原话是因为在调用初始化接口函数init后,会从flash设备读取正确的参数更新到nor_flash0表项中,在使用FAL组件前都需要调用FAL初始化函数fal_init,其内调用flash设备初始化函数fal_flash_init,最后会调用注册到fal_flash_dev设备表项中的初始化函数device_table->ops.init,所以nor_flash0表项参数会在FAL初始化时被更新。
同时需要开启SFUD框架支持,打开ENV工具,由于SFUD的使用需要指定一个spi设备,这里我选择使用最近移植好的软件spi,路径Hardware Drivers Config->On-chip Peripheral Drivers-> Enable soft SPI BUS->Enable soft SPI1 BUS (software simulation),这里的测试开发板是恩智浦LPC55S69-EVK,并且这款BSP的软件interwetten与威廉的赔率体系 SPI由我本人对接,关于这部分的软件SPI引脚定义可以选用默认即可,当然也可以使用自定义引脚,只要不与其他引脚产生冲突。
此时回到ENV主界面,进入RT-Thread Components->Device Drivers->Using Serial Flash Universal Driver,此时才可以看到SFUD选项出现(如果没有使能SPI则无法看到),使能后保持默认。
FAL组件FAL SFUD测试用例
为了验证W25Q128及软件模拟SPI在SFUD框架上是否能够成功运行,在. t-threadsplpc55sxxlpc55s69_nxp_evkoardports下新建一个soft_spi_flash_init.c文件,代码如下:
/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */ #include #include "spi_flash.h" #include "spi_flash_sfud.h" #include "drv_soft_spi.h" #include "drv_pin.h" #include "rtconfig.h" #define cs_pin GET_PINS(1,9) static int rt_soft_spi_flash_init(void) { int result = -1; result = rt_hw_softspi_device_attach("sspi1", "sspi10", cs_pin); rt_kprintf("value is %d ",result); if(result == RT_EOK) { rt_kprintf("rt_hw_softspi_device_attach successful! "); } if (RT_NULL == rt_sfud_flash_probe("W25Q128", "sspi10")) { return -RT_ERROR; } return RT_EOK; } INIT_COMPONENT_EXPORT(rt_soft_spi_flash_init);
这里需要指定一个片选引脚,这里暂时使用了SSPI2的SCK引脚作为片选,需要注意不要同时打开SSPI1和SSPI2,后续我会专门上传一个通用GPIO作为片选引脚,避免产生问题。然后软件SPI设备的挂载使用的是SSPI1 bus及SSPI10 device,并且挂载flash设备到SSPI10。
在 . t-threadsplpc55sxxlpc55s69_nxp_evkoardports 下新建fal_sample.c文件,并编写测试代码:
//fal_sample.c /* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */ #include "rtthread.h" #include "rtdevice.h" #include "board.h" #include "fal.h" #define BUF_SIZE 1024 static int fal_test(const char *partiton_name) { int ret; int i, j, len; uint8_t buf[BUF_SIZE]; const struct fal_flash_dev *flash_dev = RT_NULL; const struct fal_partition *partition = RT_NULL; if (!partiton_name) { rt_kprintf("Input param partition name is null! "); return -1; } partition = fal_partition_find(partiton_name); if (partition == RT_NULL) { rt_kprintf("Find partition (%s) failed! ", partiton_name); ret = -1; return ret; } flash_dev = fal_flash_device_find(partition->flash_name); if (flash_dev == RT_NULL) { rt_kprintf("Find flash device (%s) failed! ", partition->flash_name); ret = -1; return ret; } rt_kprintf("Flash device : %s " "Flash size : %dK " "Partition : %s " "Partition size: %dK ", partition->flash_name, flash_dev->len/1024, partition->name, partition->len/1024); /* erase all partition */ ret = fal_partition_erase_all(partition); if (ret < 0) { rt_kprintf("Partition (%s) erase failed! ", partition->name); ret = -1; return ret; } rt_kprintf("Erase (%s) partition finish! ", partiton_name); /* read the specified partition and check data */ for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len); if (ret < 0) { rt_kprintf("Partition (%s) read failed! ", partition->name); ret = -1; return ret; } for(j = 0; j < len; j++) { if (buf[j] != 0xFF) { rt_kprintf("The erase operation did not really succeed! "); ret = -1; return ret; } } i += len; } /* write 0x00 to the specified partition */ for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_write(partition, i, buf, len); if (ret < 0) { rt_kprintf("Partition (%s) write failed! ", partition->name); ret = -1; return ret; } i += len; } rt_kprintf("Write (%s) partition finish! Write size %d(%dK). ", partiton_name, i, i/1024); /* read the specified partition and check data */ for (i = 0; i < partition->len;) { rt_memset(buf, 0xFF, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len); if (ret < 0) { rt_kprintf("Partition (%s) read failed! ", partition->name); ret = -1; return ret; } for(j = 0; j < len; j++) { if (buf[j] != 0x00) { rt_kprintf("The write operation did not really succeed! "); ret = -1; return ret; } } i += len; } ret = 0; return ret; } static void fal_sample(void) { /* 1- init */ fal_init(); if (fal_test("font") == 0) { rt_kprintf("Fal partition (%s) test success! ", "font"); } else { rt_kprintf("Fal partition (%s) test failed! ", "font"); } if (fal_test("download") == 0) { rt_kprintf("Fal partition (%s) test success! ", "download"); } else { rt_kprintf("Fal partition (%s) test failed! ", "download"); } } MSH_CMD_EXPORT(fal_sample, fal sample);FAL组件测试结果 打开串口工具,输入命令:
msh/>easyflash_sample这里就可以进行编译下载了,成功后的截图如下:
DFS文件系统什么是DFS?
DFS 是 RT-Thread 提供的虚拟文件系统组件,全称为 Device File System,即设备虚拟文件系统,文件系统的名称使用类似 UNIX 文件、文件夹的风格,目录结构如下图所示:
在 RT-Thread DFS 中,文件系统有统一的根目录,使用 / 来表示。而在根目录下的 f1.bin 文件则使用 /f1.bin 来表示,2018 目录下的 f1.bin 目录则使用 /data/2018/f1.bin 来表示。即目录的分割符号是 /,这与 UNIX/Linux 完全相同,与 Windows 则不相同(Windows 操作系统上使用 来作为目录的分割符)。
DFS文件系统 DFS架构
RT-Thread DFS 组件的主要功能特点有:
为应用程序提供统一的 POSIX 文件和目录操作接口:read、write、poll/select 等;
支持多种类型的文件系统,如 FatFS、RomFS、DevFS 等,并提供普通文件、设备文件、网络文件描述符的管理;
支持多种类型的存储设备,如 SD Card、SPI Flash、Nand Flash 等;
DFS 的层次架构主要分为 POSIX 接口层、虚拟文件系统层和设备抽象层;
DFS文件系统使用ENV配置DFS
打开ENV, 进入路径RT-Thread Components → DFS: device virtual file system,使能DFS: device virtual file system
由于DFS使用的是POSIX接口,而dfs_posix.h已经在新版本中移除了,如果想要兼容老版本,可在menuconfig中使能RT-Thread Components->Support legacy version for compatibility
由于elmfat文件系统默认最大扇区大小为512,但这里使用的flash模块W25Q128的Flash扇区大小为4096,为了将elmfat文件系统挂载到W25Q128上,Maximum sector size需要和W25Q128扇区大小保持一致,修改为4096,路径:RT-Thread Components → DFS: device virtual file system → Enable elm-chan fatfs / elm-chan's FatFs, Generic FAT Filesystem Module
保存退出后使用scons --target=mdk5生成MDK5工程。
DFS文件系统DFS挂载到FAL分区测试
这里增加FAL flash抽象层,将elmfat文件系统挂载到W25Q128 flash设备的filesystem分区上,由于FAL管理的filesystem分区不是块设备,需要先使用FAL分区转BLK设备接口函数将filesystem分区转换为块设备,然后再将DFS elmfat文件系统挂载到filesystem块设备上。
接下来修改fal_sample.c文件,修改后代码:
/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */ #include "rtthread.h" #include "rtdevice.h" #include "board.h" #include "fal.h" #include #define FS_PARTITION_NAME "filesystem" #define BUF_SIZE 1024 static int fal_test(const char *partiton_name) { int ret; int i, j, len; uint8_t buf[BUF_SIZE]; const struct fal_flash_dev *flash_dev = RT_NULL; const struct fal_partition *partition = RT_NULL; if (!partiton_name) { rt_kprintf("Input param partition name is null! "); return -1; } partition = fal_partition_find(partiton_name); if (partition == RT_NULL) { rt_kprintf("Find partition (%s) failed! ", partiton_name); ret = -1; return ret; } flash_dev = fal_flash_device_find(partition->flash_name); if (flash_dev == RT_NULL) { rt_kprintf("Find flash device (%s) failed! ", partition->flash_name); ret = -1; return ret; } rt_kprintf("Flash device : %s " "Flash size : %dK " "Partition : %s " "Partition size: %dK ", partition->flash_name, flash_dev->len/1024, partition->name, partition->len/1024); /* erase all partition */ ret = fal_partition_erase_all(partition); if (ret < 0) { rt_kprintf("Partition (%s) erase failed! ", partition->name); ret = -1; return ret; } rt_kprintf("Erase (%s) partition finish! ", partiton_name); /* read the specified partition and check data */ for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len); if (ret < 0) { rt_kprintf("Partition (%s) read failed! ", partition->name); ret = -1; return ret; } for(j = 0; j < len; j++) { if (buf[j] != 0xFF) { rt_kprintf("The erase operation did not really succeed! "); ret = -1; return ret; } } i += len; } /* write 0x00 to the specified partition */ for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_write(partition, i, buf, len); if (ret < 0) { rt_kprintf("Partition (%s) write failed! ", partition->name); ret = -1; return ret; } i += len; } rt_kprintf("Write (%s) partition finish! Write size %d(%dK). ", partiton_name, i, i/1024); /* read the specified partition and check data */ for (i = 0; i < partition->len;) { rt_memset(buf, 0xFF, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len); if (ret < 0) { rt_kprintf("Partition (%s) read failed! ", partition->name); ret = -1; return ret; } for(j = 0; j < len; j++) { if (buf[j] != 0x00) { rt_kprintf("The write operation did not really succeed! "); ret = -1; return ret; } } i += len; } ret = 0; return ret; } static void fal_sample(void) { /* 1- init */ fal_init(); if (fal_test("font") == 0) { rt_kprintf("Fal partition (%s) test success! ", "font"); } else { rt_kprintf("Fal partition (%s) test failed! ", "font"); } if (fal_test("download") == 0) { rt_kprintf("Fal partition (%s) test success! ", "download"); } else { rt_kprintf("Fal partition (%s) test failed! ", "download"); } } MSH_CMD_EXPORT(fal_sample, fal sample); static void fal_elmfat_sample(void) { int fd, size; struct statfs elm_stat; struct fal_blk_device *blk_dev; char str[] = "elmfat mount to W25Q flash.", buf[80]; /* fal init */ fal_init(); /* create block device */ blk_dev = (struct fal_blk_device *)fal_blk_device_create(FS_PARTITION_NAME); if(blk_dev == RT_NULL) rt_kprintf("Can't create a block device on '%s' partition. ", FS_PARTITION_NAME); else rt_kprintf("Create a block device on the %s partition of flash successful. ", FS_PARTITION_NAME); /* make a elmfat format filesystem */ if(dfs_mkfs("elm", FS_PARTITION_NAME) == 0) rt_kprintf("make elmfat filesystem success. "); /* mount elmfat file system to FS_PARTITION_NAME */ if(dfs_mount(FS_PARTITION_NAME, "/", "elm", 0, 0) == 0) rt_kprintf("elmfat filesystem mount success. "); /* Get elmfat file system statistics */ if(statfs("/", &elm_stat) == 0) rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d. ", elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree); if(mkdir("/user", 0x777) == 0) rt_kprintf("make a directory: '/user'. "); rt_kprintf("Write string '%s' to /user/test.txt. ", str); /* Open the file in create and read-write mode, create the file if it does not exist*/ fd = open("/user/test.txt", O_WRONLY | O_CREAT); if (fd >= 0) { if(write(fd, str, sizeof(str)) == sizeof(str)) rt_kprintf("Write data done. "); close(fd); } /* Open file in read-only mode */ fd = open("/user/test.txt", O_RDONLY); if (fd >= 0) { size = read(fd, buf, sizeof(buf)); close(fd); if(size == sizeof(str)) rt_kprintf("Read data from file test.txt(size: %d): %s ", size, buf); } } MSH_CMD_EXPORT_ALIAS(fal_elmfat_sample, fal_elmfat,fal elmfat sample);DFS文件系统测试结果
打开串口工具,输入命令:
msh />fal_elmfat_sample
测试结果如下:
结语
本期我们介绍了FAL组件和DFS文件系统的功能特点和使用方法,下期将给大家介绍使用FAL分区管理与easyflash变量管理的第二部分,如何将EasyFlsh移植到FAL分区。静待后续,下期见!
审核编辑:汤梓红
-
FlaSh
+关注
关注
10文章
1633浏览量
147952 -
操作系统
+关注
关注
37文章
6808浏览量
123291 -
变量
+关注
关注
0文章
613浏览量
28361 -
fal
+关注
关注
0文章
5浏览量
6753 -
RT-Thread
+关注
关注
31文章
1285浏览量
40093
原文标题:【LPC55S69】使用FAL分区管理与easyflash变量管理(上集)
文章出处:【微信号:NXP_SMART_HARDWARE,微信公众号:恩智浦MCU加油站】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论