0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

结合两种威廉希尔官方网站 的优势:实时延迟与移相器

星星科技指导员 来源:ADI 作者:Bilgin Kiziltas 2023-06-14 14:18 次阅读

Bilgin Kiziltas

本文概述两种电子波束成形威廉希尔官方网站 的优点和缺点:移相器(PS)和实时延迟(TTD)。人们认为,可以在混合波束成形架构中组合使用这两种方法,以提供更好的SWaP-C和复杂程度相对较低的系统设计。

简介

电子扫描阵列(ESA)使用PS或TTD或两者的组合,在阵列的转向角限值内使汇聚波束指向目标方向。用于实现锥形波束的可调衰减器也可以被视为波束成形元件。本文探讨在相同的ESA中,在何处以及如何使用TTD和PS分层方法可以帮助消除一些相控阵设计挑战。

利用基本公式探索可能的使用场景

瞬时带宽(IBW)可以定义为无需调谐,即可保持在基于系统要求设定的目标性能指标内的频段。

TTD在该频率范围内具有恒定的相位斜率;因此,使用TTD,而非使用PS的ESA实施方案不会出现波束斜视效应。所以,对于高IBW应用,基于TTD的ESA更加方便。

PS在其工作频率范围内具有恒定的相位;因此,在整个系统中,特定的移相器设置会导致在不同的频率下产生不同的波束转向角。所以,与基于TTD的阵列相比,基于PS的阵列的IBM范围可能更窄一些。

这种现象被称为波束斜视,可以使用公式1计算,其中Δθ表示峰值斜视角,θ0表示最大波束角,f0表示载波频率,f表示瞬时信号频率。微信截图_20200307100422.png

使用公式1,我们可以计算出在最坏情况下,即低频率边缘(载波频率为3 GHz,瞬时信号频率为2.9 GHz)下,±30°波束转向角系统的Δθ约为1.15°,信号频率为3 GHz,IBW为100 MHz。在最坏情况下,将波束转向角调节到±60°,将IBW调节到200 MHz,会导致约8.11°的波束斜视。很明显,即使在雷达应用中,TTD也是更合适的选择。可以说,相比TTD,PS的设计简单和成本优势使其适用于更广泛的市场,所以ESA主要采用移相器。

如果TTD能够符合系统要求,那么在相同的信号链中使用PS合理吗?

为了验证,我们对一个32 × 32(正方形)的ESA进行试验,其天线元件之间的栅距(d)为d = λ/2,工作频率范围为8 GHz至12 GHz,扫描角度为±60°,且假定所有场景(图4)都符合EIRP标准。

在本例中,根据公式2中给出的均匀线性阵列的半功率波束宽度近似公式,方位角和仰角对应的系统波束宽度分别为≅ 3.17°(视轴,θ = 0°)和≅ 6.35°(最大扫描角,θ = 60°),其中N表示一个轴上的元素数,θB表示同一轴上的波束宽度(单位为度)。

微信截图_20200312083258.png

即使在很小的扫描角度下,波束宽度值也远大于波束角分辨率,将PS与TTD串联可以补偿波束角分辨率,但会产生额外的波束斜视,也会降低系统的波束角分辨率。实际上,使用分辨率更高的TTD是为了实现更低的量化旁瓣水平(QSLL),而不是为了实现更高的波束角分辨率。随着频率升高,相比根据所需的相位分辨率设计PS,根据所需的时间分辨率设计TTD来满足目标QSLL标准相对更加困难;因此,可以将PS和TTD组合使用,不但可以达到目标QSLL标准,而且仍然可以保持合理的波束斜视水平。

在同一个ESA中同时采用PS和TTD是为了在设计具有交叉极化能力的系统时,可以减轻波束斜视。交叉极化是通过在天线元件的V端和H端之间设置90°相移来产生的。在要求的交叉极化带宽内,使两端之间的相移尽可能接近90°有助于实现出色的交叉极化隔离,以保证良好运行。基于PS的ESA在频率范围内保持恒定相位,所以具有宽带交叉极性能力(图1),基于TTD的ESA则不同,只有在单个频率下,两端之间才能达到90°(图2)。图3所示的架构可用于使用交叉极化,同时消除波束斜视。

Figure 1. Nonsquint free wideband cross polarization with phase shifters behind the V and H feeds of antenna elements.

图1. 天线元件的V和H端使用移相器时的无非斜视宽带交叉极化。

Figure 2. Squint free narrow-band cross polarization with true time delays behind the V and H feeds of antenna elements.

图2. 天线元件的V和H端使用实时延迟时的无斜视窄带交叉极化。

Figure 3. A true time delay on common leg and phase shifters behind the V and H feeds of antenna elements to optimize beam squint while having wideband cross polarization capability.

图3. 天线元件的V和H端的通用leg和移相器的实时延迟可以优化波束斜视,并实现宽带交叉极化能力。

TTD覆盖范围由最低工作频率下,整个阵列中相距最远的两个元件之间的最大延迟ΔtMAX决定。根据公式5,图4所示的阵列示例的TTD覆盖约2.45 ns。

Equation 5

在不需要交叉极化时,是否能使用TTD取代天线元件中的PS,需要考虑几点。这种覆盖意味着很高的损耗,且很难适应天线间距。在给定的覆盖范围内,使用6位相位PS的分辨率会带来一些设计挑战,且会导致TTD中设置多个延迟级。

如果分辨率保持不变,通过减少覆盖范围来消除这些缺陷,那么在超过该覆盖范围时(使用公式4计算等效相位),则会归零,然而波束斜视特性会消失。

这种快速分析表明,即使在不需要交叉极化时,在每个天线元件中使用PS,然后在子阵列的通用leg中使用TTD,这种结构非常有效。图4中的TTD还是需要相同的覆盖范围,但现在它们用于匹配子阵列之间相对较大的时间延迟,因此其分辨率要求相对于每个天线元件中的TTD有所放宽。

Figure 4. 1024 (32 × 32) element array partitioned into 16 subarrays consisting of 8 × 8 elements.

图4. 1024 (32 × 32)元件阵列分为16个子阵列,每个子阵列由8 × 8个元件组成。

将相控阵分为子阵列可以降低系统的成本和复杂性,但会导致更高的扫描损耗,且会降低波束转向分辨率。通过提供更宽的波束宽度,子阵列的波束宽度更宽,对波束斜视效应的耐受性会更高。从子阵列的大小这点来看,波束斜视和波束宽度目标显然是重要的考量因素。

结论

在每个天线元件中采用实时延迟是为了实现无宽带斜视操作,每个天线元件的V和H端使用移相器,则是为了实现宽带交叉极化操作。

如果不需要交叉极化,且目标是实现完全无斜视操作,则应采用基于TTD的设计。随着频率增大,增加PS有助于满足QSLL目标,但会影响无斜视操作。

如果需要交叉极化,那么天线的每个极化端都应连接完全一样的单个PS,且在工作带宽上实现严格的90°相移。在PS的通用leg上增加TTD有助于消除波束斜视。

无论是否需要交叉极化,在子阵列结构中,在天线元件中使用PS,然后在子阵列的通用leg中使用TTD,这会是一种经济高效的解决方案。注意,可以在数字域中实现TTD功能,所有数字设计都可以消除TTD和PS,但这会导致系统成本升高。

在深入研究ESA设计面临的无数挑战之前,了解单独使用TTD或PS与将二者组合使用之间的差异是规划系统级波束成形架构的一个重要部分,该架构具有更好的SWaP-C,可以满足系统要求。

ADI公司提供丰富的解决方案、平台和产品组合,适用于各种应用中的所有interwetten与威廉的赔率体系 、数字和混合波束成形ESA,且能够为整个信号链提供定制功率解决方案。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 天线
    +关注

    关注

    68

    文章

    3200

    浏览量

    140798
  • 分辨率
    +关注

    关注

    2

    文章

    1061

    浏览量

    41926
  • 移相器
    +关注

    关注

    3

    文章

    103

    浏览量

    33248
收藏 人收藏

    评论

    相关推荐

    90°分布式MEMS 移相器的设计

    介电常数的薄层绝缘介质,使得MEMS 金属桥与共面波导信号线在“关”态下形成MIM 电容的方法,实现了提高“关”“开”两种状态下的电容比,从而提高了单位长度上的相移量。在Ka 波段下,建立90°分布式MEMS 移相器的等效电路,并对其进行了仿真优化,达到要求的
    发表于 08-03 11:01

    HTML5和HLS协议两种威廉希尔官方网站 完美结合解决移动端网页播放问题

    ;quot;example.m3u8"></source></video> 这两种威廉希尔官方网站 结合应用最为广泛就是网络视频直播
    发表于 06-01 14:48

    多路电子负载在这两种电源测试中的优势是什么

    电源是保障电子仪器正常工作的装置,因此对于电源各项性能指标都有严格要求。随着电子设备对电源的要求不断变化,电源对于测试仪器及威廉希尔官方网站 的要求也越来越高。本文着重对多路输出电源和大功率电源测试进行阐述,分析多路电子负载在这两种电源测试中的优势
    发表于 05-10 07:03

    求大佬分享采用北斗BDM100模块设计的两种家庭监护终端?

    本文根据老人监护的需求特点,利用我国自主研发的北斗卫星定位系统,结合北斗定位模块BDM100设计了两种针对不同需求的家庭监护终端方案,用于对老人进行实时定位,并将实时位置信息传输到监管
    发表于 05-21 07:05

    设备振弦采集仪NLM5xx有实时接收和超时休眠两种工作模式,两种工作模式如何切换呢?

    设备振弦采集仪NLM5xx有实时接收和超时休眠两种工作模式,两种工作模式如何切换呢?
    发表于 05-17 13:21

    微尖的两种制作工艺

    微尖的两种制作工艺:描述各向异性腐蚀结合键合和各向异性腐蚀结合电镀来制作微尖的方法,利用这两种方法制作出了针尖直径小于25 nm的金字塔形微尖,通过实验证明:这是
    发表于 12-29 23:44 14次下载

    具有8输出的移相器

    具有8输出的移相器
    发表于 09-29 15:54 1767次阅读
    具有8<b class='flag-5'>种</b>输出的<b class='flag-5'>移相器</b>

    移相器延迟线的区别与移相器的实现方式

    近些年相控阵雷达快速发展,移相器在T/R中是必不可少的器件。每个辐射单元背后都有一个电控移相器控制相移,从而使天线孔径面的相位产生变化,实现波束灵活指向。这里主要介绍二极管开关移相器图书。
    的头像 发表于 03-13 15:08 2.4w次阅读
    <b class='flag-5'>移相器</b>和<b class='flag-5'>延迟</b>线的区别与<b class='flag-5'>移相器</b>的实现方式

    OpenStack与K8s结合两种方案的详细介绍和比较

    OpenStack与K8S结合主要有两种方案。一是K8S部署在OpenStack平台之上,二是K8S和OpenStack组件集成。
    的头像 发表于 10-14 09:38 2.7w次阅读

    浅析移相器延迟线的区别以及PIN二极管移相器

    移相器(Phaser)能够对波的相位进行调整的一装置。任何传输介质对在其中传导的波动都会引入相移,这是早期模拟移相器的原理;现代电子威廉希尔官方网站 发展后利用A/D、D/A转换实现了数字移相,顾
    的头像 发表于 04-15 17:48 6616次阅读

    MATLAB/simulink中两种实现建模方式的优势

    导读:本期文章主要介绍在MATLAB/simulink中建模时的两种不同实现方式,一是直接用现成的文件库中的模块进行搭建,一是用Sfunction代码实现。接下来以电压型磁链观测器为建模目标,来比较这
    的头像 发表于 09-15 10:10 5034次阅读

    介绍两种常见的移相器电路原理

    移相器的电路原理可以有多种实现方式,以下是两种常见的移相器电路原理
    的头像 发表于 09-19 11:01 2238次阅读

    两种常见的移相器电路原理解析

    移相器的电路原理可以有多种实现方式,以下是两种常见的移相器电路原理。
    的头像 发表于 09-19 11:02 3199次阅读

    移相器的工作原理 移相器延迟线的区别

    移相器的工作原理 移相器延迟线的区别  移相器延迟线是电子电路中常用的两种器件,它们都能实现
    的头像 发表于 10-22 12:43 5115次阅读

    两种电缆类型的特点及优势

    随着威廉希尔官方网站 的发展,电缆的材料和结构不断优化,以满足日益增长的电力需求和复杂的应用环境。本文将详细探讨两种广泛使用的电缆类型——聚氯乙烯绝缘电缆和交联聚乙烯绝缘电缆,它们的特点、优势及适用范围。 一
    的头像 发表于 08-28 16:23 358次阅读