0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一个通用的自适应prompt方法,突破了零样本学习的瓶颈

深度学习自然语言处理 来源:深度学习自然语言处理 2023-06-01 14:48 次阅读

今天要给大家介绍一篇Google的研究,解决了大语言模型(LLMs)在零样本学习方面的困境。相比于少样本学习,LLMs在零样本学习上常常表现得比较弱,这主要是因为缺乏指导。而且,目前的研究对零样本学习的改进也不多,因为在没有真实标签的任务中设计prompt方法还比较困难。

为了解决这个问题,这篇研究提出了一种Universal Self-adaptive Prompting (USP)方法,对LLMs的零样本学习进行了优化,同时也适用于少样本学习任务。USP只需要少量未标记的数据,就能大幅提升LLMs在20多个自然语言理解和生成任务上的表现。实际上,它的结果比起少样本基线方法甚至更好!

接下来就让我们一起揭开USP方法的神秘面纱,看看它是如何做到这一切的吧!

caf58d18-0018-11ee-90ce-dac502259ad0.png

论文:Universal Self-adaptive Prompting
地址:https://arxiv.org/pdf/2305.14926.pdf

前言

在介绍USP方法之前,让我们先了解一下三种主流方法,分别是:Chain of Thought (CoT)、Self-Consistency (SC)和Consistency-based Self-adaptive Prompting (COSP)。这些方法是目前LLMs推理研究的主要方向,而COSP方法也是这篇研究的主要灵感来源。

首先,CoT方法将一个具体的推理问题拆分成多个步骤,并将每个步骤的解释信息输入LLMs,从而得出最终的答案。这种方法已经被证明可以解决具有较大推理难度的问题,并且当训练数据足够时,大模型会表现出出色的推理能力。很快,SC方法应运而生,对CoT方法进行了改进。SC方法认为,通过对多个CoT推理路径进行采样,并将它们的结果进行投票,选择一致性最高的输出作为最终答案,可以进一步提高LLMs的推理准确性。

而COSP方法采用了双阶段策略,以进一步增强LLMs的零样本学习能力。在第一阶段,COSP类似于SC,采用多路径解码进行零样本推理。它对同一查询在不同解码路径上进行预测,并计算出归一化熵,用于量化模型在不同解码路径下的自信程度和预测之间的差异。基于熵值(以及其他指标如多样性和重复性),COSP对第一阶段的输出进行排名,并选择自信的输出作为伪演示数据。在第二阶段,COSP再次将这些伪演示数据与查询结合,以类似于少样本推理的方式进行处理。最终的预测结果是通过两个阶段的输出进行多数投票得出的。

这些方法为LLMs的推理能力带来了显著提升。然而,它们对于不同类型的任务可能存在一些局限性和挑战。比如,针对一些分类NLP问题,模型的逻辑回归结果对于不确定性的量化很有用,但在COSP的设计中却忽视了这一信息。此外,对于那些涉及创造性和生成性任务的任务,多数投票的概念可能并不存在,因为有很多合理的解决方案存在。

因此,这篇研究的目标是提出一种通用的、适用于各种任务的方法,而不仅仅局限于COSP所考虑的狭窄领域。然而,要实现这个目标并不容易,因为通用的提示策略需要适应众多且差异巨大的任务,这些任务在目标、提示、评估以及置信度/不确定性量化方面都存在显著的差异。

接下来,我们将详细介绍Universal Self-adaptive Prompting(USP)方法,看看它是如何解决这些挑战的!

USP方法

cafc0918-0018-11ee-90ce-dac502259ad0.png

如上图所示,USP总体上与COSP方法有一些相似之处:同样采用两阶段的过程。在第一阶段,LLMs以零样本的方式进行提示,生成一组候选回答,然后从中选择一些模型生成的伪演示数据。在第二阶段,这些伪演示数据以少样本的方式添加到测试查询之前,再次提示LLMs以获得最终的预测结果。

然而,USP引入了几个关键的设计决策,使其与COSP有所区别,有效地提高了其泛化能力:

任务特定的伪演示数据选择器:在USP中,从零样本输出中选择适合的查询-回答对是至关重要的,这就是伪演示数据选择器。COSP使用基于一致性的选择器,只适用于一部分特定任务,而USP则设计了一个选择器,针对不同任务,选择不同的伪演示数据集,增强了其灵活性。

测试集和生成伪演示数据集的分离:与COSP默认使用完整的测试集T在第一阶段生成伪演示数据不同,USP需要一个通用的无标签数据集D。该数据集可以是完整的测试集T其中的一个子集,或者是一个不同的无标签集合。D的唯一目的是生成伪演示数据,即使事先不知道完整的测试集,或者只有少量无标签的查询可用。

减少对多数投票的依赖:虽然多数投票对于COSP至关重要(如图中c所示),但它计算上较为昂贵,并且在多数本身无法明确定义的情况下不适用。相比之下,USP默认在第二阶段只进行一次解码,使用贪婪解码(即temperature=0),将最大似然估计(MLE)的输出作为最终预测结果。USP仍然支持对多次解码进行多数投票,以进一步提高性能,但不再依赖这种方式来运行。

任务特定的伪演示数据选择器

选择器的目标是为了构建候选伪演示数据集P(通过将数据集查询和LLMs的零样本预测连接而成),并从中选择一些伪演示数据S来添加到测试查询中。作者使用一个函数F来对每个候选伪演示数据进行评分。首先,找到在P中使得F最大的伪演示数据作为第一个被选中的伪演示数据。对于接下来的伪演示数据,作者使用一个带有多样性促进项的F来选择,同时惩罚那些与已选中的伪演示数据过于相似的候选项。

作者设计F函数的目的是根据任务的特性,将可能的任务分为三种通用类型(如下表所示),并对每种类型设计不同的评分函数。这样做可以实现通用提示,在不同的任务上取得良好的效果。在设计F函数时,作者考虑了可能的响应数量和正确响应的数量,并使用了一些技巧来确保评分的准确性和可比性。

cb0a1ada-0018-11ee-90ce-dac502259ad0.png

下面我们详细介绍一下这三种任务的划分标准及选择方法的差异。

针对分类(CLS)问题,LLMs需要从几个可能选项中选择一个正确答案。这种情况下,标签空间很小,模型的逻辑回归结果对于不确定性的量化很有用。我们不需要使用SC方法来估计预测的置信度。对于伪演示数据集,我们只需查询LLM一次,并使用类别的负熵作为CLS情况下评分函数F的度量指标。

Short-form generation(SFG)问题是指这样一类生成问题:通常有很多可能的回答,但只有一个到几个是正确的短回答。例如问答任务,其中可能的回答涵盖整个词汇表V。与CLS情况不同,我们假设只能访问模型的输出,而没有对数概率分布。这种情况包括了COSP中的问题(例如COSP中考虑的算术推理问题),我们可以使用归一化熵来衡量模型的置信度,不过对于非CoT提示的任务,我们跳过了生成理由的步骤,直接询问答案。

最后一类是Long-form generation(LFG)问题,通常需要生成较长的回答,并有许多合理的可能回答,典型的例子包括总结和翻译。在这种情况下,如果对同一个查询进行m次温度采样解码,即使对于置信的预测,生成的文本也不可能完全相同,这是因为生成的文本长度较长。为了衡量这种情况下的置信度,我们首先按照SFG问题的设置,对每个回答进行m次温度采样查询,得到m个预测结果。随后,我们计算所有m个响应对之间的平均ROUGE分数。注意我们也可以采用其他指标例如如pairwise BLEU或句子的余弦相似度。我们使用FLFG来对D中的查询进行置信度排序,并确定要在S中使用哪些查询。对于伪演示的响应部分,我们再次对LLM进行一次解码,使用argmax或贪婪解码,以获得所选查询上的MLE预测结果。然后将这些预测结果与查询连接起来构建S。最后,鉴于零样本文本生成完全由提示驱动,我们观察到LLM有时会生成极具自信的文本补全,而不是实际完成指定的任务,选择这些输出作为伪演示会严重降低性能。考虑到这些输出通常具有异常高的平均ROUGE得分,我们采用了一种简单有效的异常值过滤方法,即移除得分大于上四分位数加1.5倍四分位距(IQR)的查询。这是一种经典的用于定义异常值的方法。

实验设置

作者在PaLM-540B和PaLM-62B上进行了实验,并考虑了各种常见的自然语言处理任务:对于CLS任务,包括常识推理、阅读理解、填空完成、自然语言推理等;对于SFG任务,包括开放域问答、阅读理解问答和词语预测;对于LFG任务,包括摘要任务。作者没有考虑CoT推理任务,因为先前的研究已经证明了COSP方法在这些任务上的有效性。

作者将USP与四个baseline进行比较,分别是:zero-shot、AutoCoT、Random demo(按照USP的步骤进行操作,但是在选择伪演示时不使用评分函数,而是从P中随机选择K个伪演示)、5-shot(few-shot, k=5)。为了公平比较,AutoCoT、Random demo和USP都会为每个样本生成5个伪演示,从每个任务中随机选择64个未标记的测试查询。

结果分析

下面3个表分别展示了CLS、SFG和LFG任务上的实验结果。

cb1a3f64-0018-11ee-90ce-dac502259ad0.png

cb25ec2e-0018-11ee-90ce-dac502259ad0.png

cb2ff598-0018-11ee-90ce-dac502259ad0.png

可以看到,在CLS、SFG和LFG任务中,USP显著改善了标准的zero-shot性能,优于其他zero-shot提示方法,并且在许多情况下接近甚至优于标准的few-shot提示方法,而这才仅使用了每个任务64个未标记样本。

无论是在不同的数据集还是不同的模型上,USP在SFG和LFG任务上的改进幅度比在CLS任务上要大,而在PaLM-540B上的改进幅度也比PaLM-62B更大。作者推测前一观察结果的原因是在生成任务中,LLMs更需要来自示例的指导,因为这些任务涉及到无限的动作选择,而在CLS任务中,LLM只需要从几个选项中选择一个回答。至于后一观察结果,作者认为较大的模型具有更强的能力从示例中学习,能够更好地利用更准确/更好的示例(5-shot结果在PaLM-540B中更强的事实也支持这一观点)。在这种情况下,USP生成的更准确/更高质量的伪示例导致了对基线方法的更大优势,而基线方法的伪示例质量仅取决于模型的平均表现。

为了分析伪演示选择器如何选择高质量的伪演示,作者分析了所有任务的未标记数据集D中查询的USP得分与ground-truth性能(准确性、EM或ROUGE,取决于任务类型)之间的关系。下图展示了一些代表性结果,在各种任务类型和不同难度的任务中(如图中由灰色虚线标记的平均性能),USP得分通常与ground-truth性能呈良好的相关性。最近的研究结果表明,更大的LLMs确实通过在上下文中学习信息(而不仅仅是遵循提示格式)并从正确示例中受益,这与USP的结果一致。

cb3dfcf6-0018-11ee-90ce-dac502259ad0.png

总结

本研究提出了USP方法,它是一种专为零样本学习而设计的自适应prompt方法,适用于各种自然语言理解和生成任务。通过精心选择零样本模型生成的输出作为示例进行上下文学习,取得了显著的改进效果。在本研究中,作者们展示了USP在两个LLM模型上超过标准零样本提示和其他基线方法的优势。

未来的改进空间也很大。首先,目前的工作主要集中在上下文演示方面,还没有尝试优化其他提示组件。进一步的研究可以将USP与自动提示设计相结合,实现更灵活的提示方式。其次,随着LLM能力的不断提升,我们可以将USP的思想应用于更多的创新设置中,例如规划任务以及多模态问题领域的拓展。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 语言模型
    +关注

    关注

    0

    文章

    521

    浏览量

    10270
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24691
  • 自然语言
    +关注

    关注

    1

    文章

    288

    浏览量

    13347

原文标题:一个通用的自适应prompt方法,突破了零样本学习的瓶颈

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    模糊自适应PID控制方法

    种模糊自适应PID控制方法https://bbs.elecfans.com/jishu_260252_1_1.html
    发表于 08-18 09:55

    什么是自适应算术编码?

    算术编码是种无失真的编码方法,能有效地压缩信源冗余度,属于熵编码的种。算术编码的重要特点就是可以按分数比特逼近信源熵,
    发表于 10-23 07:36

    基于神经网络自适应谐波电流抑制方法

    在传统谐波注入法基础上提出种神经网络自适应 谐波电流抑制 方法,根据自适应噪声抵消威廉希尔官方网站 运用人工神经网络的自适应和自
    发表于 08-22 15:44 14次下载
    基于神经网络<b class='flag-5'>自适应</b>谐波电流抑制<b class='flag-5'>方法</b>

    种超声测距的鲁棒自适应建模方法

    种超声测距的鲁棒自适应建模方法,很好的学习资料,快来下载吧。
    发表于 03-23 17:52 11次下载

    基于自适应正弦滤波的序电流互感器在线检测方法_杨浩

    基于自适应正弦滤波的序电流互感器在线检测方法_杨浩
    发表于 03-15 17:25 1次下载

    基于自适应图像分类方法

    的角度出发,针对自适应图像分类问题,提出种新的基于协同特征的无监督方法。首先,所有源样本被作为字典;然后,距离目标样本最近的三
    发表于 12-04 16:07 1次下载

    基于模型的自适应方法综述

    自适应为管理现代软件系统的复杂性提供了有效的解决方案,被设计为自适应系统的软件能够持续的演化以应对环境中的不确定性,在现有的研究工作中,基于模型的自适应方法
    发表于 12-19 15:09 1次下载
    基于模型的<b class='flag-5'>自适应</b><b class='flag-5'>方法</b>综述

    基于直推判别字典学习样本分类方法

    样本分类的目标是对训练阶段未出现过的类别的样本进行识别和分类,其主要思路是,借助类别语义信息,将可见类别的知识转移到未见类别中.提出了种直推式的字典
    发表于 12-25 10:15 0次下载
    基于直推判别字典<b class='flag-5'>学习</b>的<b class='flag-5'>零</b><b class='flag-5'>样本</b>分类<b class='flag-5'>方法</b>

    分层学习自适应动态规划

    本文基于婴儿的认知发育模型LOC (Levels of Consciousness)提出了基于分层学习自适应动态规划方法以改进学习和优化。根据LOC模型中感知的层次性以及工作目标的层
    发表于 01-05 15:13 0次下载
    分层<b class='flag-5'>学习</b>的<b class='flag-5'>自适应</b>动态规划

    模糊时序自适应预测方法

    结合数据特征及分布特点提出种基于谱聚类的模糊时间序列自适应预测方法。首先基于谱聚类的思想,根据样本数据特征获取其所属论域的个数及范围,实现向模糊时间序列的
    发表于 02-23 11:07 0次下载

    区块链将成为自适应学习的催化剂

    自适应学习包括所有最新和先进的威廉希尔官方网站 ,如人工智能和机器学习,以根据每个人的需要获取和张贴的内容。它包含了电子学习、个性化教育、微学习、代币化、
    发表于 02-12 11:15 747次阅读

    融合样本学习和小样本学习的弱监督学习方法综述

    融合样本学习和小样本学习的弱监督学习方法综述 来源:《系统工程与电子威廉希尔官方网站 》,作者潘崇煜等 摘
    发表于 02-09 11:22 2302次阅读
    融合<b class='flag-5'>零</b><b class='flag-5'>样本</b><b class='flag-5'>学习</b>和小<b class='flag-5'>样本</b><b class='flag-5'>学习</b>的弱监督<b class='flag-5'>学习方法</b>综述

    基于深度学习样本SAR图像目标识别

    将该框架推广到广义样本学习,并针对域偏置问题,提出了- -种基于语义知识的域检测方法。利用域检测方法可以先将未见类别和已见类别进行区分,然
    发表于 12-29 14:27 660次阅读

    形状感知样本语义分割

    由于大规模视觉语言预训练取得了令人瞩目的进展,最近的识别模型可以以惊人的高准确度对任意对象进行样本和开放式分类。
    的头像 发表于 04-28 11:26 816次阅读
    形状感知<b class='flag-5'>零</b><b class='flag-5'>样本</b>语义分割

    什么是样本学习?为什么要搞样本学习

    样本分类的威廉希尔官方网站 目前正处于高速发展时期, 所涉及的具体应用已经从最初的图像分类任务扩展到了其他计算机视觉任务乃至自然语言处理等多个相关领域。 对此, 本文将其称为广义样本分类。 相应
    发表于 09-22 11:10 2171次阅读
    什么是<b class='flag-5'>零</b><b class='flag-5'>样本</b><b class='flag-5'>学习</b>?为什么要搞<b class='flag-5'>零</b><b class='flag-5'>样本</b><b class='flag-5'>学习</b>?