0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【YOLOv5】LabVIEW+TensorRT的yolov5部署实战(含源码)

王立奇 来源:wangstoudamire 作者:wangstoudamire 2023-08-21 22:20 次阅读

前言

前面我们给大家介绍了使用OpenCV以及ONNX工具包实现yolov5在LabVIEW中的部署,有英伟达显卡的朋友们可能已经感受过使用cuda加速时yolov5的速度,今天主要和大家分享在LabVIEW中使用纯TensoRT工具包快速部署并实现yolov5的物体识别, 本博客中使用的智能工具包可到主页置顶博客[https://blog.csdn.net/virobotics/article/details/129304465]
中安装
。若配置运行过程中遇到困难,欢迎大家评论区留言,博主将尽力解决。

以下是YOLOv5的相关笔记总结,希望对大家有所帮助。

【YOLOv5】LabVIEW+OpenVINO让你的YOLOv5在CPU上飞起来https://blog.csdn.net/virobotics/article/details/124951862
【YOLOv5】LabVIEW OpenCV dnn快速实现实时物体识别(Object Detection)https://blog.csdn.net/virobotics/article/details/124929483
【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)https://blog.csdn.net/virobotics/article/details/124981658

一、关于YOLOv5

YOLOv5是在 COCO 数据集上预训练的一系列对象检测架构和模型。表现要优于谷歌开源的目标检测框架 EfficientDet,在检测精度和速度上相比yolov4都有较大的提高。本博客,我们以YOLOv5 6.1版本来介绍相关的部署开发。

在这里插入图片描述
YOLOv5相比于前面yolo模型的主要特点是:
1、小目标的检测精度上有明显的提高;
2、能自适应锚框计算
3、具有数据增强功能,随机缩放,裁剪,拼接等功能
4、灵活性极高、速度超快,模型超小、在模型的快速部署上具有极强优势

关于YOLOv5的网络结构解释网上有很多,这里就不再赘述了,大家可以看其他大神对于YOLOv5网络结构的解析。

二、YOLOv5模型的获取

为方便使用, 博主已经将yolov5模型转化为onnx格式 ,可在百度网盘下载
链接:[https://pan.baidu.com/s/15dwoBM4W-5_nlRj4G9EhRg?pwd=yiku]
提取码:yiku

1.下载源码

将Ultralytics开源的YOLOv5代码Clone或下载到本地,可以直接点击Download ZIP进行下载,

下载地址:[https://github.com/ultralytics/yolov5]
在这里插入图片描述

2.安装模块

解压刚刚下载的zip文件,然后安装yolov5需要的模块,记住cmd的工作路径要在yolov5文件夹下:
在这里插入图片描述
打开cmd切换路径到yolov5文件夹下,并输入如下指令,安装yolov5需要的模块

pip install -r requirements.txt

3.下载预训练模型

打开cmd,进入python环境,使用如下指令下载预训练模型:

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom

成功下载后如下图所示:
在这里插入图片描述

4.转换为onnx模型

将.pt文件转化为.onnx文件,在cmd中输入转onnx的命令(记得将export.py和pt模型放在同一路径下):

python export.py --weights yolov5s.pt --include onnx

如下图所示为转化成功界面
在这里插入图片描述
其中yolov5s可替换为yolov5myolov5myolov5lyolov5x
在这里插入图片描述

三、LabVIEW+TensorRT的yolov5部署实战(yolov5_trt_img.vi)

如需要查看TensorRT工具包相关vi含义,可查看:[https://blog.csdn.net/virobotics/article/details/129492651]

1.onnx转化为engine(onnx to engine.vi)

使用onnx_to_engine.vi,将该vi拖拽至前面板空白区域,创建并输入onnx的路径以及engine的路径,type即精度,可选择FP32或FP16,肉眼观看精度无大差别。(一般FP16模型比FP32速度快一倍)
在这里插入图片描述
转换的完整程序如下:
在这里插入图片描述

点击运行,等待1~3分钟,模型转换成功,可在刚刚设定的路径中找到我们转化好的mobilenet.engine.

Q:为什么要转换模型,不直接调用ONNX?> A:tensorRT内部加载ONNX后其实是做了一个转换模型的工作,该过程时间长、占用内存巨大。因此不推荐每次初始化都加载ONNX模型,而是加载engine。

2.部署

模型初始化

  1. 加载yolov5s.engine文件
  2. 设置输入输出缓存
    • 输入大小为13640640
    • 输出大小为1
    25200*85
    在这里插入图片描述

yolov5的预处理

  1. LetterBox
  2. blobFromImage,包含如下步骤:
1) img=img/255.0
2) img = img[None] #从(640,640,3)扩充维度至(1,640,640,3)
3) input=img.transpose(0,3,1,2) # BHWC to BCHW

1.png

在这里插入图片描述

模型推理

  1. 推荐使用数据指针作为输入给到run.vi
  2. 数据的大小为13640*640
    在这里插入图片描述

获取推理结果

  1. 循环外初始化一个25200*85的二维数组
  2. 此数组作为Get_Result的输入,另一个输入为index=0
  3. 输出为25200*85的二维数组结果

在这里插入图片描述

后处理

本范例中,后处理方式和使用onnx一样

在这里插入图片描述

完整源码

在这里插入图片描述

运行结果

1.png

项目源码

源码下载链接:https://pan.baidu.com/s/1y0scJ8tg5nzjJK4iPvNwNQ?pwd=yiku

附加说明

  • 操作系统:Windows10
  • python:3.6及以上
  • LabVIEW:2018及以上 64位版本
  • 视觉工具包:techforce_lib_opencv_cpu-1.0.0.98.vip
  • LabVIEW TensorRT工具包:virobotics_lib_tensorrt-1.0.0.22.vip
  • 运行结果所用显卡:RTX3060

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • LabVIEW
    +关注

    关注

    1970

    文章

    3654

    浏览量

    323389
  • 源码
    +关注

    关注

    8

    文章

    639

    浏览量

    29185
  • 目标检测
    +关注

    关注

    0

    文章

    209

    浏览量

    15605
收藏 人收藏

    评论

    相关推荐

    YOLOv5LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)源码

    前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5。本次主要是和大家分享使用LabVIEW快速实现
    的头像 发表于 03-13 16:01 2155次阅读

    手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别

    今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5
    的头像 发表于 03-20 16:36 2659次阅读
    手把手教你使用<b class='flag-5'>LabVIEW</b> ONNX Runtime<b class='flag-5'>部署</b> <b class='flag-5'>TensorRT</b>加速,实现<b class='flag-5'>YOLOv5</b>实时物体识别

    Yolov5算法解读

    yolov5于2020年由glenn-jocher首次提出,直至今日yolov5仍然在不断进行升级迭代。 Yolov5YOLOv5s、YOLOv5
    的头像 发表于 05-17 16:38 9046次阅读
    <b class='flag-5'>Yolov5</b>算法解读

    基于迅为RK3588【RKNPU2项目实战1】:YOLOV5实时目标分类

    【RKNPU2项目实战1】:YOLOV5实时目标分类 https://www.bilibili.com/video/BV1ZN411D7V8/?spm_id_from=333.999.0.0
    发表于 08-15 10:51

    龙哥手把手教你学视觉-深度学习YOLOV5

    利用labview部署yolov5导出的模型,能利用摄像头动态检测输出目标检测结果。根据工业视觉外观检测的速度和准确性要求,龙哥视觉结合labview编程平台推出了
    发表于 09-03 09:39

    怎样使用PyTorch Hub去加载YOLOv5模型

    使用 PyTorch Hub 加载自定义 20 类VOC训练的YOLOv5s 模型'best.pt'。TensorRT、ONNX 和 OpenVINO 模型PyTorch Hub 支持对大多数 YOLOv5
    发表于 07-22 16:02

    如何YOLOv5测试代码?

    使用文档“使用 YOLOv5 进行对象检测”我试图从文档第 10 页访问以下链接(在 i.MX8MP 上部署 yolov5s 的步骤 - NXP 社区) ...但是这样做时会被拒绝访问。该文档没有说明需要特殊许可才能下载 tes
    发表于 05-18 06:08

    基于YOLOv5的目标检测文档进行的时候出错如何解决?

    你好: 按Milk-V Duo开发板实战——基于YOLOv5的目标检测 安装好yolov5环境,在执行main.py的时候会出错,能否帮忙看下 main.py: import torch
    发表于 09-18 07:47

    YOLOv5 7.0版本下载与运行测试

    支持实例分割了,从此YOLOv5实现了图像分类、对象检测、实例分割三个支持,从训练到部署
    的头像 发表于 11-30 15:55 3790次阅读

    yolov5训练部署全链路教程

    本教程针对目标检测算法yolov5的训练和部署到EASY-EAI-Nano(RV1126)进行说明。
    的头像 发表于 01-05 18:00 3203次阅读
    <b class='flag-5'>yolov5</b>训练<b class='flag-5'>部署</b>全链路教程

    在C++中使用OpenVINO工具包部署YOLOv5模型

    下载并转换YOLOv5预训练模型的详细步骤,请参考:《基于OpenVINO™2022.2和蝰蛇峡谷优化并部署YOLOv5模型》,本文所使用的OpenVINO是2022.3 LTS版。
    的头像 发表于 02-15 16:53 4651次阅读

    使用旭日X3派的BPU部署Yolov5

    本次主要介绍在旭日x3的BPU中部署yolov5。首先在ubuntu20.04安装yolov5,并运行yolov5并使用pytoch的pt模型文件转ONNX。
    的头像 发表于 04-26 14:20 894次阅读
    使用旭日X3派的BPU<b class='flag-5'>部署</b><b class='flag-5'>Yolov5</b>

    【教程】yolov5训练部署全链路教程

    本教程针对目标检测算法yolov5的训练和部署到EASY-EAI-Nano(RV1126)进行说明,而数据标注方法可以参考我们往期的文章《Labelimg的安装与使用》。
    的头像 发表于 01-29 15:25 3419次阅读
    【教程】<b class='flag-5'>yolov5</b>训练<b class='flag-5'>部署</b>全链路教程

    yolov5和YOLOX正负样本分配策略

    整体上在正负样本分配中,yolov7的策略算是yolov5和YOLOX的结合。因此本文先从yolov5和YOLOX正负样本分配策略分析入手,后引入到YOLOv7的解析中。
    发表于 08-14 11:45 2270次阅读
    <b class='flag-5'>yolov5</b>和YOLOX正负样本分配策略

    在树莓派上部署YOLOv5进行动物目标检测的完整流程

    卓越的性能。本文将详细介绍如何在性能更强的计算机上训练YOLOv5模型,并将训练好的模型部署到树莓派4B上,通过树莓派的摄像头进行实时动物目标检测。 一、在电脑上训练YOLOv5模型
    的头像 发表于 11-11 10:38 936次阅读
    在树莓派上<b class='flag-5'>部署</b><b class='flag-5'>YOLOv5</b>进行动物目标检测的完整流程