1. 传统封装中热性能的度量标准
国际半导体设备与材料协会标准 SEMI G38-0996 和固态威廉希尔官方网站 协会 JEDECJESD51 标准中定义的集成电路中各项温度点位置如图所示,其中T3是集成电路芯片处的温度。作为衡量芯片散热性能的指标,T3主要由功耗和散热能力两方面决定,因此对集成电路封装进行热优化也可以从这两个方面进行:通过低功耗设计、布局优化设计等手段来降低或均匀化热点热量;降低热阻的角度,包括芯片内部导热优化设计和芯片外部热沉散热设计两部分。
2.散热设计的现实需求日益严峻
在三维堆叠集成电路架构中,有大量的低热导率介质在层间使用,同时随着芯片特征尺寸的减小,热点的尺寸不断缩小,导致热点扩散热阻的指数级增加,再加上芯片功率密度的急剧增加,使得集成电路的散热设计更加困难。
3.从集成电路内部结构及材料特性改善电路热特性
(1)热电结合优化设计:集成电路的热点分布由电路功耗分布决定,通过规划集成电路的功耗分布,优化布局,尽量使热量在芯片空间内均匀分布;或者采用电压岛等特殊设计,实现单位时间内各电压岛内元器件的均匀发热。
(2) 基于TSV 的多层堆香芯片热设计:利用三维集成电路/封装体中常用的高导热系数材料 (如铜)所构成的再布线层互连线(热线)和硅通孔(热TSV)构建高导热通路,是目前散热设计的重要方法。众多相关研究工作利用热TSV/热线的高导热特性,结合芯片中的电学设计和布局考量,在有限的面积下实现最大散热效果,实现热量在热点和热沉之间的高效传导,从而实现集成电路内部的热优化设计。
(3)芯片级别嵌人式微流道冷却威廉希尔官方网站 :在芯片内部引人微流道冷却威廉希尔官方网站 是目前集成电路内部散热设计的前沿方法之一。通过在硅衬底中刻蚀形成微流道,实现各层热量的层内散逸,可大大缩短热量从热点到达热沉的距离,降低散热热阻。目前,微流道冷却威廉希尔官方网站 面临很高的设计/制备复杂度的问题,这一问题在叠层芯片内部贯通的微通道网络制备中尤其突出,不仅要考虑元器件的布局形式,更要保证微流道密封可靠,能够承载散热流体的工作压力。另外,维集成电路封装体的层厚较小,其内部嵌人微流道使得封装体的机械可靠性也面临巨大考验。
4. 从集成电路外部热沅封装及材料特性改善电路热阻
(1)热界面材料:在芯片封装过程中,通常需要热界面材料 (ThermalInterface Material, TTM)对芯片和热沉进行物理途接。TIM 作为实现芯片热量均匀化及传递到热沉的中间材料,是封装散热设计需要考虑的重要因素之一。
利用 TIM 连接芯片和热沉时,会在界面处形成界面热阻。该界面热阻由两部分组成,即接触处不同材料界面的接触热阻和接触界面处间隙内的气体热阻。一般来说,界面材料导热系数的减小和固体表面粗糙度的增大,都会导致界面热阻增大.
一种常用的热界面材料设计思路是,在常规界面黏结材料基体内部加人一些高导热系数填料,如 SiC、 AIN、AI₂O3、Si0₂,等,从而提高其导热性能。随着新材料/复合材料的不断研发,越来越多的具有高导热系数的热界面材料被引八封裝领域,如导热胶、相变材料 (Phase Change Material, PCM)、导热弹性体等。碳纳米管和石 墨烯作为近年来新兴的高导热系数填料,也被用于提高热界面材料性能和封装体散热性能。导电银胶、锡浆和共晶焊按合金 等具有较好导电性的材料,已广泛应用在有电学连按需求的场合中。
(2) 热沉威廉希尔官方网站 :热沉作为一种散热单元结构,其温度一般不随传递到它的热量多少而发生改变,其中贴装热沉是集成电路最常用的冷却方式。常见的热沉冷却威廉希尔官方网站 实现途径有空气冷却、直接浸没冷却、液体冷却、热管冷却、热电致冷、相变冷却、微喷冷却等,其中空气冷却和波体冷却的应用最为普通。空气冷却威廉希尔官方网站 通常采用金属材料压膜形成翅片状,以增大散热表面积,从而提高热量散失能力。液体冷却威廉希尔官方网站 是利用流经芯片表面的冷却液体而将热量带走的为了强化散热效果,可在芯片散热表面布置扰流柱结构,这种结构不仅起到翅片作用,还可增强流动湍流度。
审核编辑:汤梓红
-
芯片
+关注
关注
455文章
50818浏览量
423711 -
封装
+关注
关注
126文章
7905浏览量
142971 -
TSV
+关注
关注
4文章
111浏览量
81473 -
热性能
+关注
关注
0文章
23浏览量
6481 -
封装设计
+关注
关注
2文章
35浏览量
11942
发布评论请先 登录
相关推荐
评论