前面我们聊过了交流和直流之间的变换,涉及的最多的应该就是开关器件的开通和关断。 那么问题来了,怎么样开关才能达到我们的需要呢? 就让我们开始下面一个阶段的聊天内容吧,脉冲宽度调制,也就是PWM(Pulse Width Modulation)。
1什么是PWM?
PWM(Pulse Width Modulation),即脉冲宽度调制。
脉宽调制威廉希尔官方网站 是通过控制半导体开关器件的通断时间,在输出端获得幅度相等而宽度可调的波形(称PWM波形),从而实现控制输出电压的大小和频率来改善输出波形的一种威廉希尔官方网站 。
前面介绍的那些全控型功率半导体器件,如GTR、MOSFET、IGBT等,用它们构成的PWM变换器,可以使装置体积小、斩波频率高、控制灵活、调节性能好和成本低。
脉宽调制的方法很多,主要分类如下:
①根据基波信号的不同,可以分为:矩形波脉宽调制和正弦波脉宽调制
矩形波脉宽调制的特点是输出脉冲列是等宽的,只能控制一定次数的谐波; 正弦波脉宽调制也叫SPWM,特点是输出脉冲列是不等宽的,宽度按正弦规律变化,输出波形接近正弦波。
②根据调制脉冲的极性,可以分为:单极性脉宽调制和双极性脉宽调制
单极性PWM是指在半个周期内载波只在一个方向变换,所得PWM波形也只在一个方向变化,而双极性PWM是指在半个周期内载波在两个方向变化,所得PWM波形也在两个方向变化。
③根据载波信号和基波信号频率之间的关系,可以分为:同步脉宽调制和异步脉宽调制
(下面会进行详细介绍)
2PWM基本原理
PWM控制的重要理论依据:
在采样控制理论中有一个重要结论:冲量(脉冲的面积)相等而形状不同窄脉冲,分别加在具有惯性环节的输入端,其输出响应波形基本相同,也就是说,尽管脉冲形状不同,但只要脉冲面积相等,其作用的效果基本相同。
如下图所示:
一个正弦半波完全可以用等幅不等宽的脉冲列来等效,但必须做到正弦半波所等分的6块阴影面积与相对应的6个脉冲列的阴影面积相等,其作用的效果就基本相同。 对于正弦波的负半周,用同样方法得到。
01单相桥式PWM变频电路工作原理
基本电路拓扑如下图所示
设负载为电感性,控制方法可以有单极性与双极性两种。
单极性PWM控制:按照PWM控制的基本原理,如果给定了正弦波频率、幅值和半个周期内的脉冲个数,PWM波形各脉冲的宽度和间隔就可以准确地计算出来。 依据计算结果来控制逆变电路中各开关器件的通断,就可以得到所需要的PWM波形。 但是这种计算很繁琐,较为实用的方法是采用调制控制,如下图所示:
把所希望输出的正弦波作为调制信号ur,把接受调制的等腰三角形波作为载波信号uc,对逆变桥VT1~VT4的控制方法如下。
①当ur正半周时,让VT1一直保持通态,VT2保持断态。 在ur与uc正极性三角波交点处控制VT4的通断,在ur>uc各区间,控制VT4为通态,输出负载电压uo=UD。 在ur
②当ur负半周时,让VT2一直保持通态,VT1保持断态,在ur和uc负极性三角波交点处控制VT3的通断。 在uruc各区间,控制VT3为断态,输出负载电压uo=0,此时负载电流可以经过VD4与VT2续流。
由于在这种控制方式中的PWM波形只能在一个方向变化,故称为单极性PWM控制方式。
双极性PWM控制:调制信号ur仍然是正弦波,而载波信号uc改为正负2个方向变化的等腰三角形,如下图所示:
对逆变桥VT1~VT4的控制方法如下:
①在ur正半周,当ur>uc的各区间,给VT1和VT4导通信号,而给VT2和VT3关断信号,输出负载电压uo=UD。 在ur
②在ur负半周,当uruc的各区间,给VT2和VT4导通信号,而给VT2和VT3关断信号,输出负载电压uo=UD。
双极性PWM控制输出uo波形为2个方向变化等幅不等宽的脉冲列。 同一半桥上下2个桥臂晶体管的驱动信号极性恰好相反,处于互补工作方式。
02三相桥式PWM变频电路工作原理
基本电路拓扑如下图所示
设负载为感性,从电路结构上看,三相桥式PWM变频电路只能选用双极性控制方式,其工作原理如下:
三相调制信号urU、urV和urW为相位依次相差120°的正弦波,而三相载波信号是公用一个正负方向变化的三角形波uc。 U、V和W相自关断开关器件的控制方法相同,现以U相为例:在urU>uc的各区间,给上桥臂电力晶体管VT1以导通驱动信号,而给下桥臂VT4以关断信号,于是U相输出电压相对直流电源UD中性点N'为uUN'=UD/2。 在urU
其他两相的控制原理与U相相同。 在双极性PWM控制方式,理论上要求同一相上下2桥臂的开关管驱动信号相反,但实际上,为了避免上下桥臂同时导通,需要在两桥臂切换间加上一个延迟时间,这个延迟时间就是我们常说的死区时间。 由于此延迟会给输出PWM波形带来偏离正弦波的不利影响,所以在保证安全可靠换流前提下,死区时间应尽可能取小。
3PWM逆变电路的调制控制方式
在PWM电路中,载波频率fc与调制信号频率fr之比称为载波比,即N=fc/fr。 根据载波和调制信号波是否同步,PWM逆变电路有异步调制和同步调制两种控制方式。
01异步调制
当载波比N不是3的整数倍时,载波与调制信号波就存在不同步的调制,就是异步调制。 如fc=10fr,载波比N=10,不是3的倍数。 在异步调制控制方式中,通常fc固定不变,逆变输出电压频率的调节是通过改变fr的大小来实现的,所以载波比N也随时跟着变化,就难以同步。
异步调制控制方式的特点:
①控制相对简单;
②在调制信号的半个周期内,输出脉冲的个数不固定,脉冲相位也不固定,正负半周的脉冲不对称,而且半周期前后1/4周期的脉冲也不对称,输出波形就偏离了正弦波;
③载波比N越大,半周期内调制的PWM波形脉冲数就越多,正负半周不对称和半周内前后1/4周期脉冲不对称的影响越小,输出波形越接近正弦波。 所以在采用异步调制控制方式时,要尽量提高载波频率fc,使不对称的影响尽量减小,输出波形更接近正弦波。
02同步调制
在三相逆变电路中,当载波比N是3的整数倍时,载波与调制信号波能同步调制。 下图给出N=9时的同步调制控制时的三相PWM波形:
在同步调制控制方式中,通常保持载波比N不变,若要增高逆变输出电压的频率,必须同时增高fc和fr,保持载波比N不变,保持同步调制不变。
同步调制控制方式的特点:
①控制相对较复杂,通常采用微机控制;
②在调制信号的半个周期内,输出脉冲的个数是固定不变的,脉冲相位也是固定的。 正负半周的脉冲对称,而且半个周期脉冲排列也是左右对称的,输出波形等效于正弦。
但是,当逆变电路要求输出频率fo很低时,由于半周期内输出脉冲的个数不变,所以由PWM调制而产生fo附近的谐波频率也相应很低,这种低频谐波不易滤除,而且会对三相异步电机造成不利影响,例如电动机噪声变大、震动加大等。 为了克服同步调制控制方式低频段的缺点,通常采用"分段同步调制"的方法,即把逆变电路的输出频率范围划分成若干个频率段,每个频率段内都保持载波比为恒定,而不同频率段所取的载波比不同。
a.在输出高频率段时,取较小的载波比,这样载波频率不至于过高,能在功率开关器件所允许的频率范围内;
b.在输出频率为低频率段时,取较大的载波比,这样载波频率不至于过低,谐波频率也较高且幅值也小,也易于滤除,从而减小了对异步电动机的不利影响。
这样看来,同步调制方式效果比异步调制方式好,但同步调制控制方式较为复杂,一般由微机进行控制。
有的电路在输出低频率段时采用异步调制方式,而在输出高频率段时换成同步调制控制方式,这种综合调制控制方式,其效果和分段同步调制方式相接近。
今天我们就聊聊以上有关PWM的基本概念和原理,正在的实际使用中需要考虑到很多细节,明天我们继续聊。
-
PWM
+关注
关注
114文章
5186浏览量
213957 -
谐波
+关注
关注
7文章
824浏览量
41789 -
脉宽调制
+关注
关注
3文章
219浏览量
38320 -
波形
+关注
关注
3文章
379浏览量
31565 -
开关器件
+关注
关注
1文章
191浏览量
16889
发布评论请先 登录
相关推荐
评论