0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看威廉希尔官方网站 视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Verilog FFT设计

CHANBAEK 来源:数字IC与好好生活的两居室 作者:除夕之夜啊 2023-03-27 11:42 次阅读

FFT(Fast Fourier Transform),快速傅立叶变换,是一种 DFT(离散傅里叶变换)的高效算法。 在以时频变换分析为基础的数字处理方法中,有着不可替代的作用。

FFT 原理

公式推导

DFT 的运算公式为:

图片

其中,

图片

将离散傅里叶变换公式拆分成奇偶项,则前 N/2 个点可以表示为:

图片

同理,后 N/2 个点可以表示为:

图片

由此可知,后 N/2 个点的值完全可以通过计算前 N/2 个点时的中间过程值确定。 对 A[k] 与 B[k] 继续进行奇偶分解,直至变成 2 点的 DFT,这样就可以避免很多的重复计算,实现了快速离散傅里叶变换(FFT)的过程。

算法结构

8 点 FFT 计算的结构示意图如下。

由图可知,只需要简单的计算几次乘法和加法,便可完成离散傅里叶变换过程,而不是对每个数据进行繁琐的相乘和累加。

图片

重要特性

(1) 级的概念

每分割一次,称为一级运算。

设 FFT 运算点数为 N,共有 M 级运算,则它们满足:

图片

每一级运算的标识为 m = 0, 1, 2, ..., M-1。

为了便于分割计算,FFT 点数 N 的取值经常为 2 的整数次幂。

(2) 蝶形单元

FFT 计算结构由若干个蝶形运算单元组成,每个运算单元示意图如下:

图片

蝶形单元的输入输出满足:

图片

其中,图片

每一个蝶形单元运算时,进行了一次乘法和两次加法。

每一级中,均有 N/2 个蝶形单元。

故完成一次 FFT 所需要的乘法次数和加法次数分别为:

图片

(3) 组的概念

每一级 N/2 个蝶形单元可分为若干组,每一组有着相同的结构与图片因子分布。

例如 m=0 时,可以分为 N/2=4 组。

m=1 时,可以分为 N/4=2 组。

m=M-1 时,此时只能分为 1 组。

(4) 图片因子分布

图片因子存在于 m 级,其中 图片

在 8 点 FFT 第二级运算中,即 m=1 ,蝶形运算因子可以化简为:

图片

(5) 码位倒置

对于 N=8 点的 FFT 计算,X(0) ~ X(7) 位置对应的 2 进制码为:

X(000), X(001), X(010), X(011), X(100), X(101), X(110), X(111)

将其位置的 2 进制码进行翻转:

X(000), X(100), X(010), X(110), X(001), X(101), X(011), X(111)

此时位置对应的 10 进制为:

X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)

恰好对应 FFT 第一级输入数据的顺序。

该特性有利于 FFT 的编程实现。

FFT 设计

设计说明

为了利用仿真简单的说明 FFT 的变换过程,数据点数取较小的值 8。

如果数据是串行输入,需要先进行缓存,所以设计时数据输入方式为并行。

数据输入分为实部和虚部共 2 部分,所以计算结果也分为实部和虚部。

设计采用流水结构,暂不考虑资源消耗的问题。

为了使设计结构更加简单,这里做一步妥协,乘法计算直接使用乘号。 如果 FFT 设计应用于实际,一定要将乘法结构换成可以流水的乘法器,或使用官方提供的效率较高的乘法器 IP。

蝶形单元设计

蝶形单元为定点运算,需要对旋转因子进行定点量化。

借助 matlab 将旋转因子扩大 8192 倍(左移 13 位),可参考附录。

为了防止蝶形运算中的乘法和加法导致位宽逐级增大,每一级运算完成后,要对输出数据进行固定位宽的截位,也可去掉旋转因子倍数增大而带来的影响。

代码如下:

`timescale 1ns/100ps
/**************** butter unit *************************
Xm(p) ------------------------> Xm+1(p)
           -        ->
             -    -
                -
              -   -
            -        ->
Xm(q) ------------------------> Xm+1(q)
      Wn          -1
*//////////////////////////////////////////////////////
module butterfly
    (
     input                       clk,
     input                       rstn,
     input                       en,
     input signed [23:0]         xp_real, // Xm(p)
     input signed [23:0]         xp_imag,
     input signed [23:0]         xq_real, // Xm(q)
     input signed [23:0]         xq_imag,
     input signed [15:0]         factor_real, // Wnr
     input signed [15:0]         factor_imag,


     output                      valid,
     output signed [23:0]        yp_real, //Xm+1(p)
     output signed [23:0]        yp_imag,
     output signed [23:0]        yq_real, //Xm+1(q)
     output signed [23:0]        yq_imag);


    reg [4:0]                    en_r ;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            en_r   <= 'b0 ;
        end
        else begin
            en_r   <= {en_r[3:0], en} ;
        end
    end


    //=====================================================//
    //(1.0) Xm(q) mutiply and Xm(p) delay
    reg signed [39:0] xq_wnr_real0;
    reg signed [39:0] xq_wnr_real1;
    reg signed [39:0] xq_wnr_imag0;
    reg signed [39:0] xq_wnr_imag1;
    reg signed [39:0] xp_real_d;
    reg signed [39:0] xp_imag_d;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            xp_real_d    <= 'b0;
            xp_imag_d    <= 'b0;
            xq_wnr_real0 <= 'b0;
            xq_wnr_real1 <= 'b0;
            xq_wnr_imag0 <= 'b0;
            xq_wnr_imag1 <= 'b0;
        end
        else if (en) begin
            xq_wnr_real0 <= xq_real * factor_real;
            xq_wnr_real1 <= xq_imag * factor_imag;
            xq_wnr_imag0 <= xq_real * factor_imag;
            xq_wnr_imag1 <= xq_imag * factor_real;
            //expanding 8192 times as Wnr
            xp_real_d    <= {{4{xp_real[23]}}, xp_real[22:0], 13'b0}; 
            xp_imag_d    <= {{4{xp_imag[23]}}, xp_imag[22:0], 13'b0};
        end
    end


    //(1.1) get Xm(q) mutiplied-results and Xm(p) delay again
    reg signed [39:0] xp_real_d1;
    reg signed [39:0] xp_imag_d1;
    reg signed [39:0] xq_wnr_real;
    reg signed [39:0] xq_wnr_imag;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            xp_real_d1     <= 'b0;
            xp_imag_d1     <= 'b0;
            xq_wnr_real    <= 'b0 ;
            xq_wnr_imag    <= 'b0 ;
        end
        else if (en_r[0]) begin
            xp_real_d1     <= xp_real_d;
            xp_imag_d1     <= xp_imag_d;
            //提前设置好位宽余量,防止数据溢出
            xq_wnr_real    <= xq_wnr_real0 - xq_wnr_real1 ; 
            xq_wnr_imag    <= xq_wnr_imag0 + xq_wnr_imag1 ;
      end
    end


   //======================================================//
   //(2.0) butter results
    reg signed [39:0] yp_real_r;
    reg signed [39:0] yp_imag_r;
    reg signed [39:0] yq_real_r;
    reg signed [39:0] yq_imag_r;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            yp_real_r      <= 'b0;
            yp_imag_r      <= 'b0;
            yq_real_r      <= 'b0;
            yq_imag_r      <= 'b0;
        end
        else if (en_r[1]) begin
            yp_real_r      <= xp_real_d1 + xq_wnr_real;
            yp_imag_r      <= xp_imag_d1 + xq_wnr_imag;
            yq_real_r      <= xp_real_d1 - xq_wnr_real;
            yq_imag_r      <= xp_imag_d1 - xq_wnr_imag;
        end
    end


    //(3) discard the low 13bits because of Wnr
    assign yp_real = {yp_real_r[39], yp_real_r[13+23:13]};
    assign yp_imag = {yp_imag_r[39], yp_imag_r[13+23:13]};
    assign yq_real = {yq_real_r[39], yq_real_r[13+23:13]};
    assign yq_imag = {yq_imag_r[39], yq_imag_r[13+23:13]};
    assign valid   = en_r[2];

endmodule

顶层例化

根据 FFT 算法结构示意图,将蝶形单元例化,完成最后的 FFT 功能。

可根据每一级蝶形单元的输入输出对应关系,依次手动例化 12 次,也可利用 generate 进行例化,此时就需要非常熟悉 FFT 中“组”和“级”的特点:

(1) 8 点 FFT 设计,需要 3 级运算,每一级有 4 个蝶形单元,每一级的组数目分别是 4、2、1。

(2) 每一级的组内一个蝶形单元中两个输入端口的距离恒为 图片(m 为级标号,对应左移运算 1<<< span="">m),组内两个蝶形单元的第一个输入端口间的距离为 1。

(3) 每一级相邻组间的第一个蝶形单元的第一个输入端口的距离为 图片(对应左移运算 2<<< span="">m)。

例化代码如下。

其中,矩阵信号 xm_real(xm_imag)的一维、二维地址是代表级和组的标识。

在判断信号端口之间的连接关系时,使用了看似复杂的判断逻辑,而且还带有乘号,其实最终生成的电路和手动编写代码例化 12 个蝶形单元的方式是完全相同的。 因为 generate 中的变量只是辅助生成实际的电路,相关值的计算判断都已经在编译时完成。 这些变量更不会生成实际的电路,只是为更快速的模块例化提供了一种方法。

timescale 1ns/100ps
module fft8 (
    input                    clk,
    input                    rstn,
    input                    en,


    input signed [23:0]      x0_real,
    input signed [23:0]      x0_imag,
    input signed [23:0]      x1_real,
    input signed [23:0]      x1_imag,
    input signed [23:0]      x2_real,
    input signed [23:0]      x2_imag,
    input signed [23:0]      x3_real,
    input signed [23:0]      x3_imag,
    input signed [23:0]      x4_real,
    input signed [23:0]      x4_imag,
    input signed [23:0]      x5_real,
    input signed [23:0]      x5_imag,
    input signed [23:0]      x6_real,
    input signed [23:0]      x6_imag,
    input signed [23:0]      x7_real,
    input signed [23:0]      x7_imag,


    output                   valid,
    output signed [23:0]     y0_real,
    output signed [23:0]     y0_imag,
    output signed [23:0]     y1_real,
    output signed [23:0]     y1_imag,
    output signed [23:0]     y2_real,
    output signed [23:0]     y2_imag,
    output signed [23:0]     y3_real,
    output signed [23:0]     y3_imag,
    output signed [23:0]     y4_real,
    output signed [23:0]     y4_imag,
    output signed [23:0]     y5_real,
    output signed [23:0]     y5_imag,
    output signed [23:0]     y6_real,
    output signed [23:0]     y6_imag,
    output signed [23:0]     y7_real,
    output signed [23:0]     y7_imag
    );


    //operating data
    wire signed [23:0]             xm_real [3:0] [7:0];
    wire signed [23:0]             xm_imag [3:0] [7:0];
    wire                           en_connect [15:0] ;
    assign                         en_connect[0] = en;
    assign                         en_connect[1] = en;
    assign                         en_connect[2] = en;
    assign                         en_connect[3] = en;


    //factor, multiplied by 0x2000
    wire signed [15:0]             factor_real [3:0] ;
    wire signed [15:0]             factor_imag [3:0];
    assign factor_real[0]        = 16'h2000; //1
    assign factor_imag[0]        = 16'h0000; //0
    assign factor_real[1]        = 16'h16a0; //sqrt(2)/2
    assign factor_imag[1]        = 16'he95f; //-sqrt(2)/2
    assign factor_real[2]        = 16'h0000; //0
    assign factor_imag[2]        = 16'he000; //-1
    assign factor_real[3]        = 16'he95f; //-sqrt(2)/2
    assign factor_imag[3]        = 16'he95f; //-sqrt(2)/2


    //输入初始化,和码位有关倒置
    assign xm_real[0][0] = x0_real;
    assign xm_real[0][1] = x4_real;
    assign xm_real[0][2] = x2_real;
    assign xm_real[0][3] = x6_real;
    assign xm_real[0][4] = x1_real;
    assign xm_real[0][5] = x5_real;
    assign xm_real[0][6] = x3_real;
    assign xm_real[0][7] = x7_real;
    assign xm_imag[0][0] = x0_imag;
    assign xm_imag[0][1] = x4_imag;
    assign xm_imag[0][2] = x2_imag;
    assign xm_imag[0][3] = x6_imag;
    assign xm_imag[0][4] = x1_imag;
    assign xm_imag[0][5] = x5_imag;
    assign xm_imag[0][6] = x3_imag;
    assign xm_imag[0][7] = x7_imag;


    //butter instantiaiton
    //integer              index[11:0] ;
    genvar               m, k;
    generate
    //3 stage
    for(m=0; m<=2; m=m+1) begin: stage
        for (k=0; k<=3; k=k+1) begin: unit


            butterfly           u_butter(
               .clk        (clk                 ) ,
               .rstn       (rstn                ) ,
               .en         (en_connect[m*4 + k] ) ,
                       //是否再组内?组编号+组内编号:下组编号+新组内编号
               .xp_real    (xm_real[ m ] [k[m:0] < (1<3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<0] < (1<3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<0] < (1<3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<1<

测试平台

testbench 编写如下,主要用于 16 路实、复数据的连续输入。 因为每次 FFT 只有 8 点数据,所以送入的数据比较随意,并不是正弦波等规则的数据。

`timescale 1ns/100ps
module test ;
    reg          clk;
    reg          rstn;
    reg          en ;


    reg signed   [23:0]   x0_real;
    reg signed   [23:0]   x0_imag;
    reg signed   [23:0]   x1_real;
    reg signed   [23:0]   x1_imag;
    reg signed   [23:0]   x2_real;
    reg signed   [23:0]   x2_imag;
    reg signed   [23:0]   x3_real;
    reg signed   [23:0]   x3_imag;
    reg signed   [23:0]   x4_real;
    reg signed   [23:0]   x4_imag;
    reg signed   [23:0]   x5_real;
    reg signed   [23:0]   x5_imag;
    reg signed   [23:0]   x6_real;
    reg signed   [23:0]   x6_imag;
    reg signed   [23:0]   x7_real;
    reg signed   [23:0]   x7_imag;


    wire                  valid;
    wire signed  [23:0]   y0_real;
    wire signed  [23:0]   y0_imag;
    wire signed  [23:0]   y1_real;
    wire signed  [23:0]   y1_imag;
    wire signed  [23:0]   y2_real;
    wire signed  [23:0]   y2_imag;
    wire signed  [23:0]   y3_real;
    wire signed  [23:0]   y3_imag;
    wire signed  [23:0]   y4_real;
    wire signed  [23:0]   y4_imag;
    wire signed  [23:0]   y5_real;
    wire signed  [23:0]   y5_imag;
    wire signed  [23:0]   y6_real;
    wire signed  [23:0]   y6_imag;
    wire signed  [23:0]   y7_real;
    wire signed  [23:0]   y7_imag;


    initial begin
        clk = 0; //50MHz
        rstn = 0 ;
        #10 rstn = 1;
        forever begin
            #10 clk = ~clk; //50MHz
        end
    end


    fft8 u_fft (
      .clk        (clk    ),
      .rstn       (rstn    ),
      .en         (en     ),
      .x0_real    (x0_real),
      .x0_imag    (x0_imag),
      .x1_real    (x1_real),
      .x1_imag    (x1_imag),
      .x2_real    (x2_real),
      .x2_imag    (x2_imag),
      .x3_real    (x3_real),
      .x3_imag    (x3_imag),
      .x4_real    (x4_real),
      .x4_imag    (x4_imag),
      .x5_real    (x5_real),
      .x5_imag    (x5_imag),
      .x6_real    (x6_real),
      .x6_imag    (x6_imag),
      .x7_real    (x7_real),
      .x7_imag    (x7_imag),


      .valid      (valid),
      .y0_real    (y0_real),
      .y0_imag    (y0_imag),
      .y1_real    (y1_real),
      .y1_imag    (y1_imag),
      .y2_real    (y2_real),
      .y2_imag    (y2_imag),
      .y3_real    (y3_real),
      .y3_imag    (y3_imag),
      .y4_real    (y4_real),
      .y4_imag    (y4_imag),
      .y5_real    (y5_real),
      .y5_imag    (y5_imag),
      .y6_real    (y6_real),
      .y6_imag    (y6_imag),
      .y7_real    (y7_real),
      .y7_imag    (y7_imag));


    //data input
    initial      begin
        en = 0 ;
        x0_real = 24'd10;
        x1_real = 24'd20;
        x2_real = 24'd30;
        x3_real = 24'd40;
        x4_real = 24'd10;
        x5_real = 24'd20;
        x6_real = 24'd30;
        x7_real = 24'd40;


        x0_imag = 24'd0;
        x1_imag = 24'd0;
        x2_imag = 24'd0;
        x3_imag = 24'd0;
        x4_imag = 24'd0;
        x5_imag = 24'd0;
        x6_imag = 24'd0;
        x7_imag = 24'd0;
        @(negedge clk) ;
        en = 1 ;
        forever begin
            @(negedge clk) ;
            x0_real = (x0_real > 22'h3F_ffff) ? 'b0 : x0_real + 1 ;
            x1_real = (x1_real > 22'h3F_ffff) ? 'b0 : x1_real + 1 ;
            x2_real = (x2_real > 22'h3F_ffff) ? 'b0 : x2_real + 31 ;
            x3_real = (x3_real > 22'h3F_ffff) ? 'b0 : x3_real + 1 ;
            x4_real = (x4_real > 22'h3F_ffff) ? 'b0 : x4_real + 23 ;
            x5_real = (x5_real > 22'h3F_ffff) ? 'b0 : x5_real + 1 ;
            x6_real = (x6_real > 22'h3F_ffff) ? 'b0 : x6_real + 6 ;
            x7_real = (x7_real > 22'h3F_ffff) ? 'b0 : x7_real + 1 ;


            x0_imag = (x0_imag > 22'h3F_ffff) ? 'b0 : x0_imag + 2 ;
            x1_imag = (x1_imag > 22'h3F_ffff) ? 'b0 : x1_imag + 5 ;
            x2_imag = (x2_imag > 22'h3F_ffff) ? 'b0 : x2_imag + 3 ;
            x3_imag = (x3_imag > 22'h3F_ffff) ? 'b0 : x3_imag + 6 ;
            x4_imag = (x4_imag > 22'h3F_ffff) ? 'b0 : x4_imag + 4 ;
            x5_imag = (x5_imag > 22'h3F_ffff) ? 'b0 : x5_imag + 8 ;
            x6_imag = (x6_imag > 22'h3F_ffff) ? 'b0 : x6_imag + 11 ;
            x7_imag = (x7_imag > 22'h3F_ffff) ? 'b0 : x7_imag + 7 ;
        end
    end


   //finish simulation
   initial #1000       $finish ;
endmodule

仿真结果

大致可以看出,FFT 结果可以流水输出。

图片

用 matlab 自带的 FFT 函数对相同数据进行运算,前 2 组数据 FFT 结果如下。

可以看出,第一次输入的数据信号只有实部有效时,FFT 结果是完全一样的。

但是第二次输入的数据复部也有信号,此时两者之间的结果开始有误差,有时误差还很大。

图片

用 matlab 对 Verilog 实现的 FFT 过程进行interwetten与威廉的赔率体系 ,发现此过程的 FFT 结果和 Verilog 实现的 FFT 结果基本一致。

将有误差的两种 FFT 结果取绝对值进行比较,图示如下。

可以看出,FFT 结果的趋势大致相同,但在个别点有肉眼可见的误差。

图片

设计总结:

就如设计蝶形单元时所说,旋转因子量化时,位宽的选择就会引入误差。

而且每个蝶形单元的运算结果都会进行截取,也会引入误差。

matlab 计算 FFT 时不用考虑精度问题,以其最高精度对数据进行 FFT 计算。

以上所述,都会导致最后两种 FFT 计算方式结果的差异。

感兴趣的学者,可以将旋转因子和输入数据位宽再进行一定的增加,FFT 点数也可以增加,然后再进行仿真对比,相对误差应该会减小。

附录:matlab 使用

生成旋转因子

8 点 FFT 只需要用到 4 个旋转因子。 旋转因子扩大倍数为 8192。

clear all;close all;clc;
%=======================================================
% Wnr calcuting
%=======================================================
for r = 0:3 
    Wnr_factor  = cos(pi/4*r) - j*sin(pi/4*r) ;
    Wnr_integer = floor(Wnr_factor * 2^13) ;

    if (real(Wnr_integer)<0) 
        Wnr_real    = real(Wnr_integer) + 2^16 ; %负数的补码
    else
        Wnr_real    = real(Wnr_integer) ;
    end
    if (imag(Wnr_integer)<0) 
        Wnr_imag    = imag(Wnr_integer) + 2^16 ; 
    else
        Wnr_imag    = imag(Wnr_integer);
    end

    Wnr(2*r+1,:)  =  dec2hex(Wnr_real)   %实部
    Wnr(2*r+2,:)  =  dec2hex(Wnr_imag)   %虚部
end

FFT 结果对比

matlab 模拟 Verilog 实现 FFT 的过程如下,也包括 2 种 FFT 结果的对比。

clear all;close all;clc;
%=======================================================
% 8dots fft
%=======================================================
for r=0:3
    Wnr(r+1)  = cos(pi/4*r) - j*sin(pi/4*r) ;
end
x       = [10, 20, 30, 40, 10, 20 ,30 ,40];
step    = [1+2j, 1+5j, 31+3j, 1+6j, 23+4j, 1+8j, 6+11j, 1+7j];
x2      = x + step;
xm0     = [x2(0+1), x2(4+1), x2(2+1), x2(6+1), x2(1+1), x2(5+1),         x2(3+1), x2(7+1)] ;


%% stage1 
xm1(1) = xm0(1) + xm0(2)*Wnr(1) ;
xm1(2) = xm0(1) - xm0(2)*Wnr(1) ;
xm1(3) = xm0(3) + xm0(4)*Wnr(1) ;
xm1(4) = xm0(3) - xm0(4)*Wnr(1) ;
xm1(5) = xm0(5) + xm0(6)*Wnr(1) ;
xm1(6) = xm0(5) - xm0(6)*Wnr(1) ;
xm1(7) = xm0(7) + xm0(8)*Wnr(1) ;
xm1(8) = xm0(7) - xm0(8)*Wnr(1) ;
floor(xm1(:))


%% stage2
xm2(1) = xm1(1) + xm1(3)*Wnr(1) ;
xm2(3) = xm1(1) - xm1(3)*Wnr(1) ;
xm2(2) = xm1(2) + xm1(4)*Wnr(2) ;
xm2(4) = xm1(2) - xm1(4)*Wnr(2) ;
xm2(5) = xm1(5) + xm1(7)*Wnr(1) ;
xm2(7) = xm1(5) - xm1(7)*Wnr(1) ;
xm2(6) = xm1(6) + xm1(8)*Wnr(2) ;
xm2(8) = xm1(6) - xm1(8)*Wnr(2) ;
floor(xm2(:))


%% stage3
xm3(1) = xm2(1) + xm2(5)*Wnr(1) ;
xm3(5) = xm2(1) - xm2(5)*Wnr(1) ;
xm3(2) = xm2(2) + xm2(6)*Wnr(2) ;
xm3(6) = xm2(2) - xm2(6)*Wnr(2) ;
xm3(3) = xm2(3) + xm2(7)*Wnr(3) ;
xm3(7) = xm2(3) - xm2(7)*Wnr(3) ;
xm3(4) = xm2(4) + xm2(8)*Wnr(4) ;
xm3(8) = xm2(4) - xm2(8)*Wnr(4) ;
floor(xm3(:))


%% fft
fft1 = fft(x)
fft2 = fft(x2)
plot(1:8, abs(fft2))
hold on
plot(1:8, abs(xm3), 'r')
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FFT
    FFT
    +关注

    关注

    15

    文章

    434

    浏览量

    59368
  • Verilog
    +关注

    关注

    28

    文章

    1351

    浏览量

    110077
  • 运算
    +关注

    关注

    0

    文章

    130

    浏览量

    25787
  • 傅立叶变换
    +关注

    关注

    3

    文章

    105

    浏览量

    32381
收藏 人收藏

    评论

    相关推荐

    用fpga实现FFT算法

    谢谢各位。。各位大神。。用fpga实现FFT算法,最好是verilog hdl的。。或者推荐一些好书。。
    发表于 05-06 00:24

    [verilog] FFT核做8192点数据,但是仿真结果和matlab的结果不一...

    [table=98%,rgb(238, 238, 238)][tr][td]你好,我是先使用一个512点的单端口ROM存储了512点的数据,然后将数据读出送给FFT核做8192点的快速傅里叶变换
    发表于 09-22 11:41

    [verilog] FFT核做8192点数据,但是仿真结果和matlab的结果不一...

    你好,我是先使用一个512点的单端口ROM存储了512点的数据,然后将数据读出送给FFT核做8192点的快速傅里叶变换,但是最后我用modelsim仿真的结果中,只有第一个结果是正确的,后面的都
    发表于 09-22 19:08

    有关用Verilog编写2048点FFT

    我使用Verilog编写了2048点FFT就是不知道如何
    发表于 08-18 20:37

    xilinx FPGA的FFT IP核的调用

    有没有大神可以提供xilinx FPGA的FFT IP核的调用的verilog 的参考程序,最近在学习FFT的IP核的使用,但是仿真结果有问题,所以想找些参考设计,谢谢
    发表于 12-25 17:05

    modelsim 仿真fft

    modelsim 仿真fft ,自己用Verilog写的程序,我给一个正弦波,发现仿真后的结果是四个尖峰,按道理说应该是两个尖峰相互对称,我是512点的。为什么中间多出两个尖峰,不知道为什么,求大神指点?自己给的sin正弦波512点后f
    发表于 01-20 08:53

    数字信号处理fftverilog应用程序

    在学习了数字信号处理之后,在底部使用verilog实现了FFT的应用
    发表于 09-28 06:49

    基于FPGA的FFT处理器的研究与设计

    本文利用频域抽取基四算法,运用灵活的硬件描述语言-Verilog HDL 作为设计主体,设计并实现一套集成于FPGA 内部的FFT 处理器。FFT 处理器的硬件试验结果表明该处理器的运算结
    发表于 01-20 14:33 40次下载

    FFT Verilog RTL

    FFT Verilog RTL
    发表于 07-08 15:55 41次下载

    利用FFT IP Core实现FFT算法

    利用FFT IP Core实现FFT算法 摘要:结合工程实践,介绍了一种利用FFT IP Core实现FFT的方法,设计能同时对两路实数序列进行256点
    发表于 01-16 10:04 6912次阅读
    利用<b class='flag-5'>FFT</b> IP Core实现<b class='flag-5'>FFT</b>算法

    fft原理及实现

    FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform)。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明
    发表于 12-19 16:18 206次下载

    verilog是什么_verilog的用途和特征是什么

    本文首先介绍了verilog的概念和发展历史,其次介绍了verilog的特征与Verilog的逻辑门级描述,最后介绍了Verilog晶体管级描述与v
    发表于 05-14 14:22 4.5w次阅读
    <b class='flag-5'>verilog</b>是什么_<b class='flag-5'>verilog</b>的用途和特征是什么

    数字信号处理FFTVerilog工程文件和程序免费下载

    本文档的主要内容详细介绍的是数字信号处理FFTVerilog工程文件和程序免费下载。
    发表于 11-29 17:13 33次下载
    数字信号处理<b class='flag-5'>FFT</b>的<b class='flag-5'>Verilog</b>工程文件和程序免费下载

    Verilog FFT设计方案

    FFT(Fast Fourier Transform),快速傅立叶变换,是一种 DFT(离散傅里叶变换)的高效算法。在以时频变换分析为基础的数字处理方法中,有着不可替代的作用。
    的头像 发表于 06-01 11:29 1309次阅读
    <b class='flag-5'>Verilog</b> <b class='flag-5'>FFT</b>设计方案

    基2FFTverilog代码实现及仿真

    上文基2FFT的算法推导及python仿真推导了基2FFT的公式,并通过python做了算法验证,本文使用verilog实现8点基2FFT的代码。
    的头像 发表于 06-02 12:38 1680次阅读
    基2<b class='flag-5'>FFT</b>的<b class='flag-5'>verilog</b>代码实现及仿真